CUB CRAFTERS, INC.

CC11-100 PILOT'S OPERATING HANDBOOK AND FLIGHT TRAINING SUPPLEMENT

SPORT CUB

Airplane Serial Number:

Airplane Registration Number:

This airplane is approved as a special light-sport category aircraft (S-LSA) as defined by 14CFR§1.1 and meets the requirements of ASTM consensus standard F2245. This document must be carried in the airplane at all times.

CUB CRAFTERS, INC. 1918 S 16th Avenue, Yakima WA. 98903 USA

Website: <u>www.cubcrafters.com</u> Email: <u>support@cubcrafters.com</u>

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 0-i

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 0-ii

Issued: 08/01/06 Date of Revision: 04/09/13

WARNING

THIS OPERATING MANUAL IS ONLY VALID FOR USE WITH THE AIRCRAFT IDENTIFIED ON THE FACE PAGE. ANY REVISIONS TO THIS MANUAL MUST BE INSERTED AS APPROPRIATE

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 0-iii

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 0-iv

Issued: 08/01/06 Date of Revision: 04/09/13

INTRODUCTION

Welcome to the group of discriminating pilots that truly enjoy flying and have selected the Sport Cub. It is our aim at Cub Crafters to ensure that you get the most from your airplane. This manual has been prepared to provide you with information about your airplane's equipment, operating procedures, performance, and suggested care. It also provides you with contact information for Cub Crafters to help you contact us at any time. However, you must do your part and study this manual carefully. It has been prepared to provide you with information about your airplane's equipment, operating procedures, performance, and suggested performance and care.

This POH, which was put in your aircraft at the time of delivery, is specifically applicable to CC11-100 Serial Number ______. To operate the aircraft legally, it must be kept up to date as new revisions become available and are sent to you.

In order to send you information in a timely manner, you must ensure that we have your current address. Please use the change of address form found in the Supplements section of this manual. You can also log on to our website, follow the owner support link and download the Change of Address/Ownership form. This will allow us to know send updated information to you as it becomes available

Our website is:

www.cubcrafters.com

Issued: 03/16/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 0-1

This manual has been prepared in accordance with consensus standard ASTM F 2746. The Sport Cub has been shown to comply with consensus standard ASTM F 2245. The airplane must be maintained in accordance with consensus standard ASTM F 2295, Standard Practice for Continued Operational Safety Monitoring of a Light Sport Aircraft. Please note that this standard describes the responsibilities of the Owner/Operator.

REVISIONS

Whenever revisions are issued, they must be inserted in the appropriate place in the manual.

A black vertical line along the outside margin of the page will identify revised text and illustrations. Changes in spelling, punctuation and formatting will not be marked.

LOG OF REVISIONS

Current revisions to the CC11-100 Pilot's Operating Manual and Flight Manual, Report *SC10000AFM*.

Revision	Revised	Description of
Number	Sections	Revision
NC	ALL	Manual created as
NO	, LE	SC10000AFM.
Α	Section 0	Revision to Handbook.
A	Section 2	Table 2-2 for Oil Pressure
	0000012	and Oil Temperature
		Gauge Markings.
В	Section 0	Revision to Handbook.
	Section 2	Revised Table 2-2 for Oil
	00010112	Pressure and Oil
		Temperature Gauge
		Markings.
		Revised all Airspeeds to
		IAS.
		Revised Maximum
		Operating Altitude.
		Removed Single Tank
		Reference.
	Section 3	Revised Maneuvering
		Speed V _A to 93 IAS.
С	Section 0	Revision to Handbook
	Section 2	Revised Oil Temperature to
		240.
	Section 4	Revised wording to
		"retract".
	Section 5	Revised Figure 5-5 for Fuel
		Flows.
		Revised Figure 5-6 to state "landing".
	Section 7	Revised Flap Operation
		description.
		Added description of Spin-
		On Oil Filter Option.

-

Revision	Revised	Description of
Number	Sections	Revision
D	Section 0	Revision to Handbook
	Section 1	Revised Introduction
		Added Performance
		Specifications
	Section 2	Added Stall Speeds.
		Removed "cold only" from Oil Pressure Red Radial
		Line.
		Corrected Oil Temperature. Added Max. Weight
		Options.
		Added "if equipped" to 2.10
		and 2.13.
		Added Total Fuel Capacity.
	Section 3	Added Operating
		Maneuvering Speed for
		Floats.
		Removed "fully" from 3.3.2.
		Added radio frequency to
		3.3.4 and 3.3.5.
		Revised 3.4.10.
		Added Loss of Primary
		Instruments.
		Added Loss of Flight
	Section 4	Controls. Added Short and Soft Field
	Section 4	Procedures.
		Added NOTE to 4.4.3.10.
	Section 5	Corrected 5.2.3 for
	00010110	Pressure Altitude.
	Section 6	Corrected Oil Quantity in
		6.3.1.
		Revised 6.3.2 for Leveling.
	Section 7	Revised 7.5.9 for Fuel
		System.
	Section 8	New Section for "Handling
		and Servicing"
E	Section 0	Revision to Handbook
	Section 3	Revised Alternator Failure.
	Section 8	Revised Approved Oils.

Revision	Revised	Description of
Number	Sections	Revision
F	Section 0	Revision to Handbook
	Section 1	Update to Figure 1-1.
	Section 2	Added IMC to 2.11
	Section 3	Corrected Carburetor Heat
		Reference.
	Section 7	Revised fiberglass to
		composite or composite
		materials.
		Added AOSS to 7.3.
		Removed "Optional" from
		7.4.
		Added LED Light Option to
		7.5.11.
		Revised 7.5.12 to Left
		Wing.
		Revised 7.7.
		Added 7.11 - Music Jack
G	Section 0	Revision to Handbook
	Section 4	Added Preflight check for
		Front and Rear Seats.
	Section 7	Added Rear Seat Strap
		Routing Information.
	Section 8	Removed Wax and Polish
		Information.
Н	ALL	Renamed Manual to "and
		Flight Training
		Supplement".
		Updated all Sections.
		Added Supplements 9.3
		and 9.4.
J	Section 3	Added 3.3.14 and 3.4.16
		for Uncommanded Trim
		Actuation
	Section 9	Added Supplement 9.5
K	Section 0	Revision to Handbook
	Section 2	Revised 2.2 for Window
		Operation.
		Added Converted Units to
		Various Sections.
		Added Window Operation
		Placard to 2.19.
	Section 4	Revised 4.2 for Converted
		Units.

Issued: 03/16/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 0-5

Revision Number	Revised Sections	Description of Revision
K cont	Section 4	Revised 4.3.1.1 Circuit Breakers Check and Moved Master Switch. Revised 4.3.1.2 "Cowling" to "Cowl". Revised 4.3.3.6.1 for Closed Doors and Windows. Revised 4.4.1.1 for Circuit Breaker Locations. Revised 4.4.1.3 for Formatting.
L	Section 0 Section 2 Section 4 Section 7	Revision to Handbook. Added Placard to 2.19. Added Step to 4.3.1.2. Revised Procedure in 4.4.1.2. Added Figures to 7.5.9. Added Seat Caution to 7.6.
	Section 9.1	

I

List of Effective pages

Rev	Page Number	Change	Date	Prepared	Checked
NC	All	Initial Issue	08/01/06		
A	0-2	Log of Revisions. Table 2-2	10/19/07	SJT	GVJ
	2-5	Lan of Devisions	01/00/00	0.17	0.11.1
В	0-2	Log of Revisions. Revised CAS to	01/28/08	SJT	SJH
	2-1, 2-2,	IAS.			
	& 2-3	Table 2-2.			
	2-5 2-7	Revised 2.12. Revised 2.14.			
	2-7	Revised V _A from			
	3-2	101 to 93 IAS .			
С	0-2	Log of Revisions. Revised Engine	07/31/08	SJH	SJH
	2-4	Operating Limits Oil Temperature to 240°.			
	4-26	Revised wording to state "Retract" flaps. Revised Figure 5-			
	5-11	5 for Fuel Flow. Revised wording			
	5-14	to state "Landing". Revised			
	7-5	description of flap operation.			
	7-9	Added description for Spin-On Oil Filter Option.			
D	0-3	Log of Revisions	11/26/08	SJH	SJH
	0-4	List of Effective			
	1-1	Pages Revised			
	1-3	Introduction. Added Summary of Performance Specifications.			
	2-2	Added Stall Speeds.			
	2-5	Removed "Cold Only" from Oil Pressure Red Radial Line.			

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 0-7

Rev	Page	Change	Date	Prepared	Checked
	Number	<u> </u>		Trepared	SHEEKEU
D Cont	2-5	Corrected Oil	11/26/08		
Cont		Temperature to 240°.			
•		Added Maximum			
		Weight Options.			
		Added 'if			
		equipped" to 2.10			
	2-6	and 2.13.			
		Added Total Fuel			
	2-7	Capacity.			
		Corrected placard location.			
	2-8	Revised 3.2.			
	2-0	Removed "fully"			
	2-11	from 3.3.2.			
		Added radio			
	3-2	frequency for			
	3-4	3.3.4 and 3.3.5.			
		Revised 3.4.10.			
	3-6	Loss of Primary			
	and 3-7	Instruments. Added Loss of			
	3-23	Flight Controls.			
	3-26	Added Short Field			
	0 20	Procedures.			
	3-27	Added Soft Field			
		Procedures.			
	4-26	Added Note to			
		4.4.3.10.			
		Corrected			
	4-27	Pressure Altitude. Revised oil			
	4-27	quantity in 6.3.1.			
	5-8	Corrected			
		Leveling in 6.3.2.			
	6-5	Revised "Fuel			
		System" in 7.5.9.			
	6-6	New Section for			
	7-8	"Handling and Servicing"			
	1-0	Cervicing			
	8-All				
			0.4/4 = /00	0.17	
E	0-3 0-7	Log of Revisions List of Effective	04/15/09	SJT	SJH
	0-7	Pages.			
	3-11	Removed belt			
		reference.			
	8-2	Revised Oil Types			

REPORT SC10000AFM Page Number: 0-8

Issued: 08/01/06 Date of Revision: 04/09/13

Rev	Page Number	Change	Date	Prepared	Checked
F	0-4	Log of Revisions	04/09/10	SJT	SJH
	0-8	List of Effective			
		Pages.			
	1-4	Revised Figure 1-			
	2-7	1. Added information			
	2-1	to 2.11.			
	3-15	Corrected			
	0.10	Carburetor Heat			
		reference.			
	7-1	Revised fiberglass			
		to composite.			
	7-2	Added AOSS.			
	7-3	Removed			
	7.4	"Optional".			
	7-4	Revised fiberglass			
		to composite materials.			
	7-8	Added LED Light			
	10	Information.			
	7-9	Revised vane			
		location to left			
		wing.			
	7-10	Revised 7.7.			
	7-11	Added Music Jack			
		Information.	04/04/44		501
G	0-4 0-8	Log of Revisions List of Effective	01/31/11	SJT	ECL
	0-0	Pages.			
	4-3	Revised 4.3.1.1 to			
		add Front and			
		Rear Seats.			
	4-16	Revised 4.4.1.1			
	7-10	Added Rear Seat			
		Strap Routing and			
	0.0	Figure 1.			
	8-3	Removed all wax			
		and polish references.			
н	All	Updated manual	10/31/11	SJT	ECL
	,	to meet ASTM	10,01,11	001	202
		F2245.			
J	0-5	Log of Revisions	03/13/12	AMS	ECL
	0-9	List of Effective			
		Pages			
	0-10	Updated TOC			
	3-i—ii	Updated TOC			

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 0-9

Rev	Page Number	Change	Date	Prepared	Checked
J	3-13	Added 3.3.14	03/13/12		
cont	3-28	Added 3.4.16			
	9-0-i	Added			
		Supplement 9.5			
K	0-5 – 0-6	Log of Revisions	08/09/12	AMS	ECL
	0-10	List of Effective			
	2-1 – 2-8	Pages Revised for			
	2-1 - 2-0	converted units.			
	2-2	Added Window			
	~ ~ ~	Open Operation.			
	2-14	Added Window			
		Operation Placard			
	4-1	Revised for			
		converted units.			
	4-3	Revised Ciruit			
		Breaker Check.			
	4-4	Revised "Cowling"			
		to "Cowl".			
	4-11	Added Circuit			
		Breakers, Windows, and			
		Landing Lights			
		sections to			
		4.3.3.1.			
	4-13	Added Doors and			
	_	Windows section.			
	4-14	Added Carburetor			
		Heat section.			
	4-17	Added circuit			
		breaker location			
		note.			
	4-18	Added "wing" to			
L	0 ALL	clarify sentence. As noted in log.	04/09/13	AMS	
	UALL	Complete section	04/09/13	AIVIO	
		re-issued.			
	2 ALL	As noted in log.			
		Complete section			
		re-issued.			
	4 ALL	As noted in log.			
		Complete section			
		re-issued.			
	7 ALL	As noted in log.			
		Complete section			
	9-1 ALL	re-issued.			
	9-1 ALL	As noted in log. Complete section			
		re-issued.			
		16-135060.			

REPORT SC10000AFM Page Number: 0-10

Issued: 08/01/06 Date of Revision: 04/09/13

TABLE OF CONTENTS

SECTION 1	GENERAL INFORMATION
SECTION 2	LIMITATIONS
SECTION 3	EMERGENCY PROCEDURES
SECTION 4	NORMAL PROCEDURES
SECTION 5	PERFORMANCE
SECTION 6	WEIGHT AND BALANCE
SECTION 7	AIRCRAFT AND SYSTEMS
SECTION 8	HANDLING AND SERVICING
SECTION 9	SUPPLEMENTS
9.1	STRAIGHT AND AMPHIBIOUS
	FLOATS
9.2	SINGLE PLACE CONVERSION
9.3	CONVERSION TABLES
9.4	FORMS
9.5	TWO-SWITCH ELEVATOR TRIM
	SYSTEM

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 0-12

Issued: 08/01/06 Date of Revision: 04/09/13

TABLE OF CONTENTS

SECTION 1

GENERAL INFORMATION

Paragraph

Page

1	GENE	RAL INFORMATION	
	1.1	INTRODUCTION	1-1
	1.2	WARNING, CAUTIONS, AND NOTES	1-1
	1.3	SUMMARY OF PERFORMANCE	
		SPECIFICATIONS	1-3

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 1-ii

Issued: 08/01/06 Date of Revision: 10/31/11

1 GENERAL INFORMATION

1.1 INTRODUCTION

This Pilot's Operating Handbook contains information required by the FAA and ASTM at the time the aircraft was certified. It also has additional data which Cub Crafters, based on its experience, has found useful.

This manual is the approved Pilot's Operating Handbook and it is part of the equipment that must be onboard the aircraft whenever it is operated.

This manual is not a substitute for adequate, competent flight training, knowledge of current Safety Alerts, Service Bulletins, and/or Notifications affecting the airplane or applicable aviation regulations.

The pilot-in-command is responsible for determining whether the airplane is safe for flight. She/he is also responsible for ensuring that all operations are conducted within the limitations defined by the appropriate FAA regulations, this manual, the aircraft's instrument markings, and appropriate placards.

While it is intended that this manual be used in flight, it must be studied regularly. The pilot must be familiar with all limitations, performance data, procedures and operational handling characteristics of the airplane prior to operating the airplane.

The information in this manual is divided into numbered sections, each of which is provided with a tab divider. The order of the sections has been designed so that the **LIMITATIONS** and **EMERGENCY PROCEDURES** may be looked up quickly. The **EMERGENCY PROCEDURES** section has a red divider tab.

Issued: 08/01/06 Date of Revision: 10/31/11

SECTION 1 GENERAL INFORMATION

The owner is reminded that it is her/his responsibility to ensure that Cub Crafters has the appropriate contact information so that flight safety and other important information can be communicated in a timely manner.

1.2 WARNINGS, CAUTIONS, AND NOTES

WARNINGS, CAUTIONS and **NOTES** are used to emphasize critical and important information and are used as defined below:

WARNING

AN OPERATING PROCEDURE, PRACTICE, OR A CONDITION WHICH, IF NOT CORRECTLY FOLLOWED OR REMEDIED, COULD RESULT IN SERIOUS PERSONAL INJURY OR LOSS OF LIFE.

CAUTION

An operating procedure, practice, or a condition which, if not strictly observed or corrected, could result in destruction of or damage to equipment.

NOTE

An operating procedure, practice, or condition which is important to emphasize.

1.3 SUMMARY OF PERFORMANCE SPECIFICATIONS

Cruise Speed (6000', 75%)	Gross Weight (wheels or skis) Gross Weight (floats) Top Speed (Sea Level/100hp)	1430 lbs
Range (6000', 75%, w/reserves)		
Rate of Climb		
Stall Speed (full flaps)	Endurance (6000', 75%, w/reserves)	4.1 hours
27 knots Stall Speed (no flaps)40 mph 35 knots Fuel Capacity (Total, both tanks)25 gallons Fuel Capacity (Usable, both tanks)24 gallons Fuel Capacity, Extended Total (if installed)44 gallons Fuel Capacity, Extended Usable (if installed) 40 gallons Approved Fuel Grades	Rate of Climb	800 fpm
Stall Speed (no flaps)	Stall Speed (full flaps)	32 mph
35 knots Fuel Capacity (Total, both tanks)		
Fuel Capacity (Total, both tanks)	Stall Speed (no flaps)	40 mph
Fuel Capacity (Usable, both tanks)		
Fuel Capacity, Extended Total (if installed)44 gallonsFuel Capacity, Extended Usable (if installed) 40 gallonsApproved Fuel Grades		
Fuel Capacity, Extended Usable (if installed) 40 gallonsApproved Fuel GradesMaximum Engine Power100 hpMaximum Engine RPM2750	Fuel Capacity (Usable, both tanks)	24 gallons
Approved Fuel Grades	Fuel Capacity, Extended Total (if installed)	44 gallons
Maximum Engine Power		
Maximum Engine RPM2750	• •	
	•	•
Oil Capacity5 to 6 Quarts		
	Oil Capacity5	5 to 6 Quarts

SECTION 1 GENERAL INFORMATION

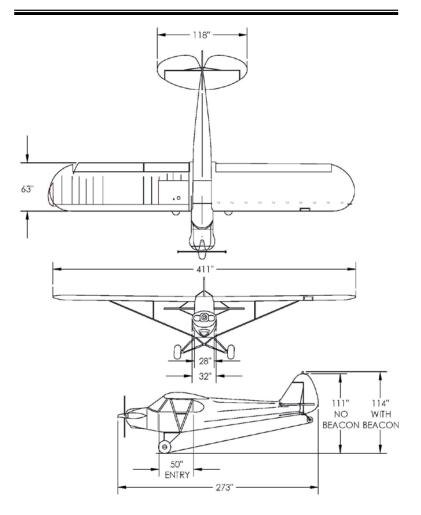


Figure 1-1 Three View Drawing

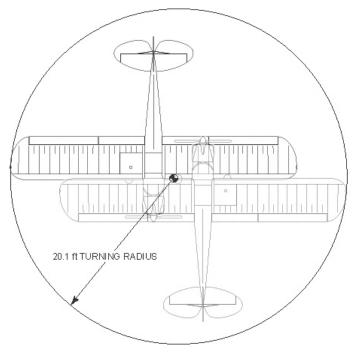


Figure 1-2 Turning Radius

Issued: 08/01/06 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 1-5

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 1-6 Issued: 08/01/06 Date of Revision: 10/31/11

TABLE OF CONTENTS

SECTION 2

LIMITATIONS

Paragraph			Page	
2. LIMITATIONS				
	2.1	GENERAL	2-1	
	2.2	AIRSPEED LIMITATIONS	2-1	
	2.3	AIRSPEED INDICATOR MARKINGS	2-3	
	2.4	POWERPLANT LIMITATIONS	2-4	
	2.5	POWERPLANT INSTRUMENT MARKINGS .	2-5	
	2.6	WEIGHT LIMITS	2-6	
	2.7	CENTER OF GRAVITY	2-6	
	2.8	MANEUVERS	2-6	
	2.9	MANEUVER LOAD FACTORS	2-6	
	2.10	MINIMUM FLIGHT CREW	2-7	
	2.11	ENVIRONMENTAL LIMITATIONS	2-7	
	2.12	MAXIMUM OPERATING ALTITUDE	2-7	
	2.13	MAXIMUM PASSENGER SEATING	2-7	
	2.14	ALLOWABLE FUEL LOADING	2-8	
	2.15	BAGGAGE AND CARGO LOADING	2-8	
	2.16	SMOKING	2-8	
	2.17	TYPES OF SURFACES	2-9	
	2.18	VORTEX GENERATORS	2-9	
	2.19	PLACARDS	2-10	

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 2-ii

2. LIMITATIONS

2.1 GENERAL

This section provides the approved operating limitations, instrument markings, color-coding and basic placards for operation of the Cub Crafters CC11-100 aircraft.

Limitations associated with optional systems and equipment which requires handbook supplements can be found in Section 9 "Supplements".

2.2 AIRSPEED LIMITATIONS

<u>SPEED</u>

IAS (mph/kts)

Maximum Operating Maneuvering Speed (V _A)	
At 1320 lbs gross weight	93/81
At 1430 lbs gross weight	97/84
(Float Equipped)	
At 1000 lbs gross weight	85/74
At minimum gross weight	85/74
(1010 Pounds)	

Do not make full or abrupt control movements above this speed.

CAUTION

Maximum operating speed DECREASES at lighter weight as the effects of aerodynamic forces become more pronounced. Linear interpolation may be used for intermediate gross weights.

<u>SPEED</u> Maximum Flap Extended Speed (V _{FE})	IAS (mph/kts)			
First notch (15°)				
Second notch (35°) Full flaps (50°)	81/70 81/70			
Do not exceed the flap speed corresponding to a given setting				
Maximum Demonstrated				
Crosswind Component	13 /11			
Stall Speed				
Stall Speed with Full Flaps				
Stall Speed with No Flaps				
Window open operation				
Maximum speed with one window	open81/70			
NOTE				

Windows must be closed for takeoff and landing. Only one window may be open in flight at a time.

2.3 AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their significance are shown in Table 2-1.

MARKING	SPEED RANGE OR VALUE (IAS mph/kts)	SIGNIFICANCE
Red radial line	141/122	Never exceed speed V_{NE}
Yellow arc	101-141/ 87-122	Operations must be conducted with caution and in smooth air
Green arc	40-101 34-87	Normal operating range
White arc	32-81 28-70	Operating range with 35° to 50° flaps extended

Table 2-1 Airspeed Indicator Markings

2.4 POWERPLANT LIMITATIONS

Engine manufacturer	
Engine operating limits Takeoff Power	100 bbp
Maximum Engine Speed	
Oil Pressure, Minimum	30 psi
Oil Pressure, Maximum	60 psi
Oil Temperature, Maximum	
Fuel Limitations (grade)	
Oil Capacity	

NOTE

Teledyne Continental Motors does not recommend the use of automotive fuels in the engine. The engine has not been tested with the additives often found in auto fuel, and unleaded fuel will result in accelerated wear of the valves and cylinders.

2.5 POWERPLANT INSTRUMENT MARKINGS

	Red radial line	2750 rpm
TACHOMETER	Green arc (normal operating range)	900-2750 rpm
	Yellow arc (caution, low)	10-30 psi
OIL PRESSURE	Green arc (normal)	30-60 psi
OIL PRESSURE	Yellow arc (caution, high)	60-100 psi
	Red radial line (maximum)	100 psi
	Yellow arc (caution, low)	75-150 °F
OIL	Green arc (normal)	150-210 °F
TEMPERATURE	Yellow arc (caution, high)	210-240 °F
	Red radial line (maximum)	240 °F

 Table 2-2
 Powerplant Instrument Markings

2.6 WEIGHT LIMITS

Maximum Weight (On Wheels or Skis)......1320 lbs/600 kg Maximum Weight (On Floats)......1430 lbs/650 kg

2.7 CENTER OF GRAVITY

Forward CG Limits

At 1320 lbs/600 kg......73.0 inches aft of datum At 1100 lbs/500 kg or less. 70.5 inches aft of datum (Straight line variation between points given)

Aft CG Limit (at all weights)78.5 inches aft of datum

The datum is 60 inches forward of wing leading edge.

2.8 MANEUVERS

CAUTION All aerobatic maneuvers, including spins, are prohibited.

2.9 MANEUVER LOAD FACTORS

Maximum	positive load	factor, flaps	up	4.0 g
Maximum	positive load	factor, flaps	down	2.0 g

Maximum negative load factor.....-2.0 g

No inverted maneuvers are approved.

2.10 MINIMUM FLIGHT CREW

The minimum required flight crew is one pilot in the front seat. This does not preclude a qualified flight instructor giving dual instruction from the back seat, if equipped.

2.11 ENVIRONMENTAL LIMITATIONS

Day V.F.R.

Flight into I.M.C. (Instrument Meteorological Conditions) is prohibited.

Flight into known icing is prohibited.

2.12 MAXIMUM OPERATING ALTITUDE

The maximum operating altitude is 17,999 feet. Use supplemental oxygen as required by your Civil Aviation Authority.

2.13 MAXIMUM PASSENGER SEATING

The aircraft is approved to carry one passenger, seated behind the pilot, if equipped.

2.14 ALLOWABLE FUEL LOADING

Standard Configuration:

25.0 US gallons/94 Liters total capacity 24.0 US gallons/90 Liters total usable

Extended Range Configuration:

44.0 US gallons/167 Liters total capacity 40.0 US gallons/150 Liters total usable

2.15 BAGGAGE AND CARGO LOADING

Standard Configuration:

Forward cargo compartment	
(behind passenger)	100 lbs/45 kg
Extended cargo compartment	-
(behind forward cargo compar	tment)20 lbs/9 kg

Extended Cargo Configuration:

Forward cargo compartment	
(behind passenger)	100 lbs/45 kg
Extended cargo compartment	-
(behind pilot)	60 lbs/27 kg
(

See Section 6 for loading information and distribution.

2.16 SMOKING

Smoking is prohibited in the aircraft.

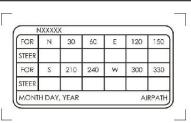
2.17 TYPES OF SURFACES

The aircraft may be operated from paved and unpaved runways.

2.18 VORTEX GENERATORS

The aircraft is allowed to fly with the following number of vortex generators missing:

- Not more than three vortex generators missing on an aircraft.
- Not more than two vortex generators missing on a wing.
- The missing vortex generators must not be next to each other.


2.19 PLACARDS

In view of the pilot:

OPERATOR MUST READ AND BE FAMILIAR WITH PILOT OPERATING HANDBOOK BEFORE FLYING AIRCRAFT. NO INTENTIONAL SPINS.

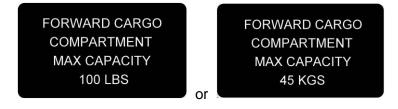
OR

READ THE PILOT'S OPERATING HANDBOOK. NO INTENTIONAL SPINS. FLIGHT INTO IMC PROHIBITED.

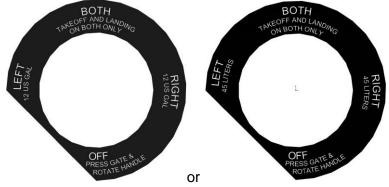
If equipped with extended range fuel tanks:

MAXIMUM FUEL IMBALANCE 18 LITERS DIFFERENCE BETWEEN TANKS

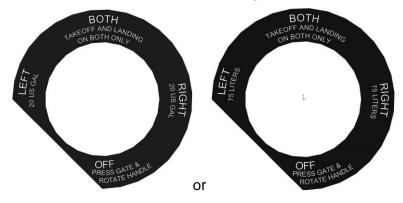
On top inboard of all lift struts:



Behind the front seat (S-LSA Aircraft):


THIS AIRCRAFT WAS MANUFACTURED IN ACCORDANCE WITH LIGHT SPORT AIRCRAFT AIRWORTHINESS STANDARDS AND DOES NOT CONFORM TO STANDARD CATEGORY AIRWORTHINESS REQUIREMENTS

REPORT SC10000AFM Page Number: 2-10 Issued: 08/01/06 Date of Revision: 04/09/13


In forward cargo compartment:

Next to fuel selector for standard tanks:

Next to fuel selector for extended range tanks:

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 2-11

EXTENDED CARGO

COMPARTMENT

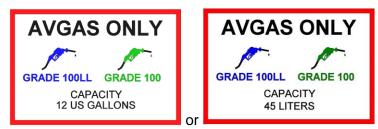
MAX CAPACITY

27 KGS

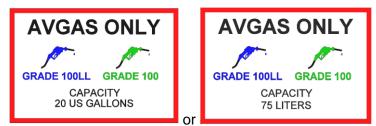
In cargo shelf compartment:

CARGO SHELF COMPARTMENT MAX CAPACITY 20 LBS Or CARGO SHELF COMPARTMENT MAX CAPACITY 9 KGS

On extended baggage compartment door:


EXTENDED CARGO COMPARTMENT MAX CAPACITY 60 LBS

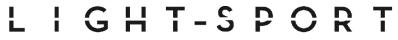
On flap lever:


F	
L	
А	
Ρ	
L	
Е	
V	
Е	
R	
	-

or

On wing next to tank filler with standard tanks:

On wing next to tank filler with extended range tanks:


Near stall warning vane:

On right-hand side of empennage:

On open door jamb:

Below each throttle control:

Next to windows

MAXIMUM SPEED WINDOWS OPEN 81 MPH / 70 KTS. WINDOWS MUST BE CLOSED FOR TAKEOFF AND LANDING. ONLY ONE WINDOW MAY BE OPEN IN FLIGHT AT A TIME.

Right side of seat base*:

DISCONNECT 90° CONNECTOR FROM ELT BEFORE TILTING SEAT FORWARD. RE-ATTACH CONNECTOR WHEN RETURNING SEAT TO DOWN POSITION.

*Only required for aircraft with both the Artex ELT and battery compartment insert installed.

Located above the right fuel drain, left fuel drain*, and gascolator on cowl.

*Only for aircraft (S/N 00264 and on) with additional fuel drain installed.

TABLE OF CONTENTS

SECTION 3

EMERGENCY PROCEDURES

Paragraph		Page
3 EMER	GENCY PROCEDURES	3-1
	IERAL	
	SPEEDS FOR EMERGENCY OPERATION	
3.3 EME	RGENCY CHECKLIST	
3.3.1	ENGINE FIRE DURING START	. 3-3
3.3.2	ENGINE FAILURE DURING TAKEOFF	. 3-4
3.3.3	LOSS OF ENGINE POWER IN FLIGHT	. 3-5
3.3.4	EMERGENCY LANDING WITHOUT	
	ENGINE POWER	. 3-6
3.3.5	PRECAUTIONARY LANDING WITH	
	ENGINE POWER	. 3-7
3.3.6	FIRE IN FLIGHT	
3.3.7	LOSS OF OIL PRESSURE	
3.3.8	HIGH OIL TEMPERATURE	
3.3.9	EMERGENCY DESCENT	
3.3.10	ALTERNATOR FAILURE	
3.3.11	OVERVOLTAGE	
3.3.12	INADVERTENT SPIN	
3.3.13	INADVERTENT ICING ENCOUNTER	-
3.3.14	UNCOMMANDED TRIM ACTUATION	
-	PLIFIED EMERGENCY PROCEDURES	-
3.4.1	ENGINE FIRE DURING START	-
3.4.2	ENGINE FAILURE DURING TAKEOFF.	3-15
3.4.3	TOTAL LOSS OF ENGINE POWER IN	
	FLIGHT	3-16
3.4.4	EMERGENCY LANDING WITHOUT	
	ENGINE POWER	3-17
3.4.5	PRECAUTIONARY LANDING WITH	
	ENGINE POWER	3-18

SECTION 3 EMERGENCY PROCEDURES

3.4.6	FIRE IN FLIGHT	3-19
3.4.7	LOSS OF OIL PRESSURE	3-20
3.4.8	HIGH OIL TEMPERATURE	3-20
3.4.9	EMERGENCY DESCENT	3-21
3.4.10	ALTERNATOR FAILURE	3-23
3.4.11	OVERVOLTAGE	3-24
3.4.12	INADVERTENT SPIN	3-24
3.4.13	INADVERTENT ICING ENCOUNTER	3-25
3.4.14	LOSS OF PRIMARY INSTRUMENTS	3-26
3.4.15	LOSS OF FLIGHT CONTROLS	3-27
3.4.16	UNCOMMANDED TRIM ACTUATION .	3-27

3 EMERGENCY PROCEDURES

3.1 GENERAL

This section provides the recommended procedures that should be followed during an emergency or a critical situation. It is divided into two parts. The first contains emergency procedure checklists. The second part amplifies the items listed in the checklists and includes information that is not readily adaptable to a checklist format or which the pilot could not be expected to refer to in an emergency situation. This information should be reviewed regularly.

Pilots must familiarize themselves with the procedures in this section and must be prepared to take appropriate action should an emergency arise.

It is stressed that the procedures outlined in this section are recommendations only. They are not a substitute for sound judgment and common sense and may have to be adjusted, depending on the circumstances prevailing at the time of the emergency. It is important that the pilot be thoroughly familiar with the aircraft. The pilot must review and practice as many of these procedures as are safe to perform as part of his training.

Above all, in any emergency situation, MAINTAIN CONTROL OF THE AIRCRAFT.

3.2 AIRSPEEDS FOR EMERGENCY OPERATIONS

	14	AS
	MPH	KNOTS
STALL SPEEDS		
Flaps up (V _{S1})	40	35
Flaps down (50°) (V _{S0})	32	28
OPERATING MANEUVERING SPEE	D (V _A)	
At 1320 lb (On Wheels or Skis)	93	81
At 1430 lb (On Floats)	97	84
BEST GLIDE (V _G)		
Flaps up (1320 lb)	68	59
Flaps down (50°, 1320 lb)		43
Configuration:		
McCauley Propeller Systems, m	odel 1B90	/CM7141,

71-inch diameter, 41-inch pitch, 6.00x6 tires.

3.3 EMERGENCY CHECKLIST

3.3.1 ENGINE FIRE DURING START

Starter.....Crank engine Continue to get a start that would suck the flames and accumulated fire into the engine.

If engine starts:

Have a qualified technician thoroughly inspect the engine and the airframe.

If engine fails to start:	
Mixture	Idle cut-off
Throttle	Open
Fuel Selector	Óff

Have a qualified technician thoroughly inspect the engine and the airframe.

If fire persists:

Fire Extinguisher If safe to do so, remove extinguisher and attempt to extinguish fire

IF FIRE PERSISTS, ABANDON AIRCRAFT AND SUMMON HELP.

3.3.2 ENGINE FAILURE DURING TAKEOFF

PRIOR TO LIFT-OFF

Maintain directional control

Throttle	Idle
Brakes	Apply as necessary
Wing Flaps	Retract
Mixture	Idle cut-off
Magneto Switches	Off
Master Switch	

AFTER LIFT-OFF

If sufficient runway remains for a normal landing, land straight ahead.

If insufficient runway remains:

Maintain a safe airspeed.

Use shallow turns to avoid obstructions.

Use of flaps depends on circumstances. Normally, flaps should be extended for touchdown.

If there is sufficient altitude to attempt a restart, proceed as follows:

Maintain safe airspeed	
Fuel Selector	Both
Mixture	
Magnetos	Ensure both on
Starter	Engage

If restart is unsuccessful, when landing area is assured: MagnetosOff Master Switch.....Off Fuel SelectorOff ELTActivated Seat Belts.....Off DoorOpen TouchdownAt the lowest possible airspeed

3.3.3 LOSS OF ENGINE POWER IN FLIGHT

IAS MPH KNOTS

If at low altitude: Airspeed (best glide)	MAINTAIN 68	59
If altitude permits: Airspeed (best glide) Fuel Selector Mixture Carburetor Heat Magnetos		Both Full rich On (Hot)
Engine Instruments	Check for indication of engine	on of cause power loss
Starter		Engage

If power is not restored and is insufficient to sustain level flight, prepare for an emergency landing without engine power (Section 3.3.4).

1.4.0

3.3.4 EMERGENCY LANDING WITHOUT ENGINE POWER

Locate suitable field.

	IAS	
	MPH	KNOTS
Airspeed (Flaps up)	68	59
Seat Belts	Tight	and secure

When landing area is assured:

Throttle	Idle
Mixture	Idle Cut-Off
Flaps	As required
Door	Öpen
Touchdown	At the lowest possible airspeed
ELT	Activate

If time permits, check GPS or charts for airports in the immediate vicinity. If possible, notify your difficulty and intentions by radio on frequency 121.50 and/or squawk 7700.

If practical, establish spiral pattern above the selected landing field. Fly a normal downwind approach, 1000' AGL abeam the desired landing point, noting any obstacles. Plan your initial approach for the middle of the field.

When aircraft comes to a stop:

Magnetos	Off
Master Switch	
Fuel Selector	

3.3.5 PRECAUTIONARY LANDING WITH ENGINE POWER

Fuel SelectorFas Seat BeltsFas MixtureFas Flaps	stened Set
IAS	
MPH KN	OTS
Maximum speed first notch flaps (15°)85 74	4
Maximum speed full flaps (>15°)81 70	0
TrimAs re	
SpeedAs re	quired
(1.3 times full flaps stall speed at gross weight is 42 or 36 knots IAS)	

If time permits, check GPS or charts for airports in the immediate vicinity.

If possible and if you are in contact with Air Traffic Control or another aircraft notify your difficulty and intentions by radio on frequency 121.50 and/or squawk 7700, as appropriate.

Fly normal downwind approach 1000' AGL abeam the desired landing field, noting obstacles.

3.3.6 FIRE IN FLIGHT

Source of fireLoc	cate
-------------------	------

ELECTRICAL FIRE

Master Switch	Off
Windows	Open
Cabin Door	Open

If source of fire is located and it is safe and practical: Fire Extinguisher Activate Land as soon as possible

If fire has been extinguished and electrical power is essential for the continuation of the flight to the nearest suitable airport or landing area:

All Electrical Switches	Off
Avionics Master Switch and Avio	onics Off
Circuit Breakers	Check for faulty circuit

If any breakers are out, note the circuits and do not reset or use the equipment powered by these circuits

Master Switch......On Avionics Master Switch.....On, one at a time, Avionics and Electrical SwitchesOn, one at a time, with a delay after each, to ensure that problem does not recur

CAUTION

If the above procedures do no fully contain a smoke/fire, the Alternator circuit breaker may be pulled. If this breaker is pulled and there has been an internal alternator failure, it is unlikely that electrical power from the alternator will be restored. Land as soon as it is safe to do so as the engine will run on battery power for a limited time only

ENGINE FIRE

Fuel Selector	Off
Throttle	Idle
Mixture	Idle cut-off
Cabin Heater	Off
Airspeed	. Maintain the highest possible, within limitations

Proceed with emergency descent (Section 3.3.9) and emergency landing without engine power (Section 3.3.4).

3.3.7 LOSS OF OIL PRESSURE

Land as soon as practical and investigate cause. Prepare for emergency landing without power (Section 3.3.4).

3.3.8 HIGH OIL TEMPERATURE

Airspeed	Increase
Power	Reduce as much as practical
Mixture	Enrich

Land as soon as practical and investigate cause. Prepare for emergency landing without power (Section 3.3.4).

3.3.9 EMERGENCY DESCENT

WARNING DO NOT EXCEED 141 mph or 122 knots (IAS) IN SMOOTH AIR WITH FLAPS UP. DO NOT EXCEED 93 mph or 81 knots (IAS) IN ROUGH AIR WITH FLAPS UP. DO NOT EXCEED 81 mph or 70 knots WITH FLAPS DOWN.

Throttle Idle Airspeed...... Do not exceed limitations

Issued: 08/01/06 Date of Revision: 03/13/12 REPORT SC10000AFM Page number: 3-9

3.3.10 ALTERNATOR FAILURE

Alternator output failure may be indicated by the low voltage annunciator illuminating. The alternator circuit breaker may trip. Output failure may be the result of a mechanical failure of the alternator or breaking of the alternator belt.

Master Switch	Off
Circuit Breakers	Check In

If the alternator drive-belt failure is NOT obvious and NO circuit breakers are out:

Master SwitchOn

If the drive belt failure is obvious, the circuit breaker is out, or electrical power is NOT restored, determine what electrical equipment is essential to continue the flight and:

Master Switch	On
Non-Essential Electrical Equipment	Off

Land as soon as it is safe to do so

CAUTION

If the alternator has an internal failure, it may need to be manually disconnected by pulling the circuit breaker. It is unlikely you will be able to recover any alternator use until alternator is replaced.

3.3.11 OVERVOLTAGE

If the bus voltage rises above 15.3 volts, the voltage annunciator will illuminate.

Master Switch Off

Wait one minute. Then, switch the master switch on and monitor voltage. If the annunciator illuminates again, turn the master switch off and plan to continue flight without electrical system.

3.3.12 INADVERTENT SPIN

	Neutral
Throttle	Closed
Rudder	Full opposite
	(Opposite to direction of spin)
Elevator	Control Forward
	(To break stall)
Elevator and Throttle	As required
	(To resume level flight smoothly)

If flaps were down, retract once a safe flying speed has been attained. Ensure that the flap speed is not exceeded (81 mph or 70 knots IAS).

CAUTION

This recovery procedure is applicable only when the aircraft is in a spin. Application of controls as described above during a stall or after the aircraft has stopped gyrating may cause the aircraft to enter into a spin.

3.3.13 INADVERTENT ICING ENCOUNTER

WARNING THIS AIRCRAFT IS NOT APPROVED FOR FLIGHT INTO KNOWN ICING. FLIGHT INTO KNOWN ICING CONDITIONS IS PROHIBITED.

CAUTION

Ice accumulation on the wings and other airframe components will greatly increase the stall speed of the airplane and result in unpredictable flight characteristics.

Ice accumulation over engine induction air inlet can cause engine roughness and/or loss of power. Ice formations on the propeller may cause severe propeller/engine vibrations.

Ice accumulation over the pitot tube may cause erroneous airspeed indications.

Ice build-up on the windshield will distort vision and probably obscure forward visibility.

At first indication of encountering icing conditions Carburetor Heat On (Hot)

If ice continues to cause reduced power: Throttle.....Full

Climb at maximum rate to produce as much heat as possible to aid in clearing the ice.

Fly toward warmer air, clear of visible moisture and/or descend to lower altitude (**if safe to do so**).

If condition persists, proceed with emergency descent (Section 3.3.9) and prepare for an emergency landing without engine power (Section 3.3.4).

3.3.14 UNCOMMANDED TRIM ACTUATION Standard Trim Switch

TRIM circuit breaker.....Off (Pull)

3.4 AMPLIFIED EMERGENCY PROCEDURES

3.4.1 ENGINE FIRE DURING START

Engine fires during starting may be caused by excessive use of the engine fuel primer. The first attempt to extinguish the fire should be to draw the excess fuel into the engine.

If the engine has not already started, the mixture must be moved to cut-off and the throttle opened fully before cranking the engine.

If the engine starts, and fire goes out within a few seconds, run it at 1700 rpm for a few minutes.

If the fire continues for more than a few seconds, it should be extinguished by the best available external means.

WARNING

IF A FIRE IS ON THE GROUND, UNDER THE AIRPLANE, DUE TO OVER-PRIMING, AND THE ENGINE HAS STARTED, TAXI AWAY FROM THE FIRE AS QUICKLY AS POSSIBLE. IF A FIRE IS ON THE GROUND BUT ENGINE HAS NOT STARTED, ABANDON THE AIRPLANE IMMEDIATELY.

In either case, have the aircraft inspected thoroughly by a qualified mechanic to ensure that it is airworthy prior to any further flights.

3.4.2 ENGINE FAILURE DURING TAKEOFF

If an engine failure occurs prior to lifting off, the pilot must ensure he maintains control of the aircraft and comes to a stop on the remainder of the runway. The items in the checklist are listed to provide added safety after a failure of this type.

If engine power is lost after lift-off, the first response must be to lower the nose to maintain airspeed. In most cases, the landing should be straight ahead with only small changes in direction to avoid obstacles. There is seldom enough altitude and airspeed to execute a 180° gliding turn to the runway. In a turn the glide angle is considerably steeper and the stall speed is substantially higher (in a 60° bank the stall speed is 62 mph or 54 knots IAS, flaps up).

If the aircraft is high enough to attempt to re-start the engine, above all, maintain a safe airspeed. Ensure that the fuel selector is in the BOTH position, the mixture RICH.

If the engine failure was caused by fuel exhaustion due to the selector being on an empty tank, power will not be restored until the air in the fuel lines is flushed out, and this may take a few seconds.

3.4.3 TOTAL LOSS OF ENGINE POWER IN FLIGHT

If the engine loses power, whether this is a total or a partial loss of power or if the engine runs roughly, the most important thing to do is to continue flying the aircraft, maintaining a safe airspeed. Trim the aircraft as required. In case of a total loss of power, the best glide speed is 68 mph or 59 knots (IAS) with flaps up.

The CC11-100 will glide 1.2 nautical miles for every 1000 feet of altitude loss. The rate of descent will be approximately 715 feet per minute. Most GPS receivers have a "Direct To" (commonly \rightarrow) function that shows the closest airports. Use charts to assess the topography of airports in the immediate vicinity.

If there is enough altitude, try to determine the cause of failure. In most cases the reason is fuel exhaustion due to the selector being on an empty tank. Switching to the BOTH position or to the opposite tank causes fuel to feed to the engine. However, power will not be restored until the air in the fuel lines is purged, and this may take a few seconds.

Another common cause of engine failure is carburetor ice. Unfortunately, if this is the case, an excessively rich air/fuel mixture may have cooled the engine to the point where there may not be sufficient hot air in the engine compartment to melt the accumulation of carburetor ice, even when the carburetor heat control is in the full "hot" position. At this point the engine will not develop enough power to maintain airspeed and altitude. It is of the utmost importance that the guidelines concerning the use of the carburetor heat given in paragraph 7.5.7 (Air Induction System) of this manual be followed closely.

3.4.4 EMERGENCY LANDING WITHOUT ENGINE POWER

When you have located a suitable field, establish a spiral pattern around this field. Try to be at 1,000 feet above the field at the downwind position, to make a normal approach. Plan your approach for landing at the midpoint of the runway; aim for the normal touchdown area only after gliding to the runway is assured.

Excess altitude may be lost by widening your pattern, using flaps, slipping, or by using a combination of these techniques.

If possible, transmit a MAYDAY message on 121.5 MHz stating location and intentions, and squawk 7700. Activate the ELT.

Once the landing site is secure and you are committed to land, apply flaps and reduce speed to 49 mph or 42 knots (IAS). Close the throttle, move the mixture control to idle cut-off, shut off the magneto switches, turn the fuel selector to OFF and turn off the master switch.

WARNING

BE EXTREMELY CAUTIOUS WHEN MANEUVERING FOR LANDING AT LOW ALTITUDES. MAINTAIN A SAFE MARGIN ABOVE STALL SPEED. SEE FIGURE 5-2 FOR STALL SPEED VERSUS ANGLE OF BANK.

NOTE

With the master switch off, the instrument, landing, and navigation lights will not operate.

SECTION 3 EMERGENCY PROCEDURES

If the landing site is very rough, there is a possibility that the aircraft may come to rest inverted. Should this occur, once the aircraft has come to a stop, open the cabin door (if you have not already done so). If the door is jammed, or if there is no clear path to leave the aircraft on the right side, it is relatively easy to push out the window on the left side. Next, protect your head with one arm and release the seat harness with the other. Exit the aircraft through the door or the windows.

Once the risk of fire has passed, ensure that the emergency locator transmitter (ELT) has been activated. If battery power is available, it may be possible to transmit to passing aircraft using the aircraft's VHF radio.

3.4.5 PRECAUTIONARY LANDING WITH ENGINE POWER

A forced landing with engine power should be treated in the same way as described in the previous section. Bear in mind that if the engine is not running correctly, it may fail at any time. It is advisable to have a contingency plan in mind.

3.4.6 FIRE IN FLIGHT

The presence of fire is noted through smoke, smell, and heat in the cabin. Electrical fires are often accompanied by an acrid smell of burning insulation.

Engine fires are very rare. The procedures outlined in the checklist are very general and pilot judgment should be the determining factor in the action to be taken. The maximum rate of descent may be obtained by diving the aircraft to 141 mph or 122 knots (IAS) and adjusting the throttle so as not to exceed 2750 rpm. Use extreme caution when flying at these limits, and do not perform abrupt maneuvers. (See section 3.3.9).

It may be advisable to side slip the aircraft in case of an engine fire. This will direct the flames away from the fuselage. If there is an option as to which way to side slip, it is preferable to have the right wing up, as the gascolator is on the lower, left side of the firewall.

If the fire persists, conduct an emergency descent, land immediately, and evacuate the aircraft.

3.4.7 LOSS OF OIL PRESSURE

More often than not, a loss of oil pressure will be gradual. If it is accompanied by an increase in oil temperature, it is a sign that there is a problem with the engine's oil system and the aircraft should be landed as soon as practical, as the engine may stop suddenly. At reduced power maintain altitude and proceed to the nearest suitable landing site. Be prepared for a power-off, forced landing.

Low oil pressure can be the result of a faulty gauge or sending unit or a malfunction in the oil pressure regulating system. In any case, land as soon as practical and have the problem investigated.

3.4.8 HIGH OIL TEMPERATURE

Abnormally high oil temperature indications may be caused by a variety of reasons, among them:

- Low oil level
- Obstruction in the air flow reaching the oil cooler
- Defective gauge

A rapid rise in oil temperature must be treated seriously. Monitor the oil pressure gauge. Reduce power, enrich the mixture and, if practical, maintain a high airspeed to ram cooling air through the oil cooler.

Land as soon as practical and investigate the cause, but be prepared for a power-off forced landing.

3.4.9 EMERGENCY DESCENT

An Emergency Descent should be initiated whenever a situation occurs at high altitude requiring a high rate of descent. This is done in order to minimize exposure of the crew and passengers to an uncontrolled fire or when smoke, toxic fumes, or other situation threatens control of the airplane through incapacitation or restricted visibility for the pilot (See paragraph, FIRE IN FLIGHT 3.4.6).

Retard throttle to IDLE.

Trim airplane for maximum allowed indicated airspeed appropriate to the configuration selected and the atmospheric conditions. Advise the control center if flight path is in an airway. The maximum rate of descent with flaps up may be obtained by diving the aircraft to 141 mph or 122 knots (IAS) and adjusting the throttle so as not to exceed 2750 rpm.

WARNING

IF DESCENT IS TO BE MADE USING FULL FLAPS, SLOW THE AIRPLANE TO 81 mph or 70 knots IAS PRIOR TO FLAP EXTENSION AND PRIOR TO STARTING THE DESCENT. EXCEEDING THE FLAP EXTENDED SPEED CAN CAUSE DAMAGE TO THE WING STRUCTURE AND POSSIBLE FAILURE OF THE FLAP ATTACHMENTS.

IF THE DESCENT IS TO BE MADE WITH THE FLAPS RETRACTED, DO NOT EXCEED 141 mph or 122 knots IAS IN SMOOTH AIR OR 93 mph or 81 knots IAS IN ROUGH AIR. DO NOT MAKE FULL ABRUPT CONTROL MOVEMENTS ABOVE 93 mph or 81 knots IAS. EXCEEDING THE NEVER EXCEED SPEED OR THE DESIGN AND OPERATING SPEEDS CAN CAUSE SEVERE DAMAGE TO AND POSSIBLE FAILURE OF THE AIRPLANE STRUCTURE. MONITOR ENGINE RPM NOT TO EXCEED 2750 RPM.

3.4.10 ALTERNATOR FAILURE

Alternator output failure can be caused by a mechanical failure of the alternator, a momentary over-voltage condition, or other reasons.

A zero or negative reading on the ammeter (if installed), or less than 12.0V on the voltmeter (if installed), can indicate alternator output failure. The alternator circuit breaker may trip. A mechanical failure of the alternator may be accompanied by unusual sounds coming from the engine compartment. The first step is to reduce the electrical load to a minimum.

NOTE

Duration of the battery is dependent on the condition of the battery at the time of the failure and the electrical load being demanded.

Turn the master switch OFF for at least one second. Turn the master switch ON. Check that the ammeter shows a POSITIVE indication (if installed), or voltmeter shows greater than 12.0V (if installed).

If the alternator returns on line, continue flight, monitor the ammeter or voltmeter (if installed) and have the system checked after landing.

If the alternator does not return on line, reduce electrical load to the minimum required for safe flight by switching off all non-essential systems. Maintain only the equipment required to provide information for safe flight.

Land AS SOON AS IS PRACTICAL and conduct appropriate repairs.

3.4.11 OVERVOLTAGE

With the engine running, the alternator is capable of raising the bus voltage to dangerously high levels. The voltage regulator limits the bus voltage to between 13.5 and 15.3 volts. If the bus voltage rises above 15.3 volts, the voltage annunciator will illuminate. If this occurs, the master switch must be turned off immediately.

Wait for at least a minute and switch master switch on and monitor the voltage (if able) to determine whether the regulator has reset itself. If the annunciator illuminates again, turn the master switch off and plan to continue flight without using the electrical system.

3.4.12 INADVERTENT SPIN

If an inadvertent spin is entered, close the throttle, neutralize the ailerons and apply full rudder opposite to the direction of the spin. Move the elevator control forward to break the stall after applying the rudder. When the rotation stops, neutralize the rudder, relax the forward pressure on the elevator control as required to smoothly regain level flight, and return to initial power setting. If the flaps were down, retract them once a safe speed has been attained. Ensure that the maximum flap speed is not exceeded.

CAUTION

This recovery procedure is applicable only when the aircraft is in a spin. Application of controls as described above during a stall or after the aircraft has stopped gyrating may cause the aircraft to enter into a spin.

3.4.13 INADVERTENT ICING ENCOUNTER

Icing conditions are very difficult to predict. Aviation weather services may predict light, moderate, or severe icing conditions at certain locations and altitudes and no icing will be encountered. At other times, icing conditions may not be forecast and any of the above levels of icing may occur.

When unexpected icing conditions are encountered, immediate action must be taken to divert from them. It may be possible to descend to a lower, warmer altitude, or it may be necessary to return to an area where no icing is present.

NOTE

Ice is especially prevalent if flying in clouds or visible moisture. This aircraft is approved for VFR flight only.

If ice build-up becomes evident on the windshield and/or the lift struts or if the engine operates rough, apply full carburetor heat.

Carburetor ice may form in temperatures from 32° to 100°F when the relative humidity is greater than 50%. Be alert for this condition if flying when the difference between the temperature and dew point is less than 20° or when there is visible moisture in the air. If carb icing is suspected of causing a loss in power, apply full carburetor heat. If the engine operation remains rough, adjust the mixture control to obtain maximum smoothness. Leave the throttle setting the same and wait for the engine to run smoothly once again after the ice is cleared. If there is no improvement, gradually apply full throttle and initiate a maximum rate climb to produce as much heat as possible under the cowling.

SECTION 3 EMERGENCY PROCEDURES

If the engine continues to run rough, it may indicate that ice is accumulating on the propeller.

It is also good practice to apply carburetor heat prior to and during an extended descent as a preventive measure.

CAUTION

Ice accumulation on the wings and other airframe components will greatly increase the stall speed of the airplane and result in unpredictable flight characteristics. Ice accumulation over engine induction air inlet can

cause engine roughness and/or loss of power. Ice formations on the propeller may cause severe

propeller/engine vibrations.

Ice accumulation over the pitot tube may cause erroneous airspeed indications.

Ice build-up on the windshield will distort vision and probably obscure forward visibility.

3.4.14 LOSS OF PRIMARY INSTRUMENTS

In the event of instrument failure, it is recommended to return to the airfield and perform a normal landing, paying very close attention to keep the airspeed well above stall speed. If the airspeed indicator is not functioning, the general feel and sound of the airplane should be used to ensure an adequate airspeed is maintained for safe flight and landing.

3.4.15 LOSS OF FLIGHT CONTROLS

Aileron or Rudder Failure (cable driven)

In the event of failure of the rudder or ailerons, control may still be maintained with the remaining control surface. Plan to land as soon as practical on a runway or field that minimizes the crosswind component. Do not perform abrupt maneuvers. Use an approach airspeed that is higher than normal for safety.

Elevator Failure (cable driven)

In the event of a failure of the elevator control system, the airplane may be controlled and landed using the stabilizer trim, power and flaps. Land as soon as possible and, if possible, elect an airport with a long runway. Prior to landing, establish level flight while maintaining a safe airspeed using a combination of power and elevator trim. Reduce power to establish a shallow decent. Adjust airspeed with trim. At touchdown, reduce power.

3.4.16 UNCOMMANDED TRIM ACTUATION

In the event of uncommanded trim motion with the standard trim switch installed on the pilot's control stick only, disable the system by pulling the TRIM circuit breaker located in the left wing trim root panel.

Intentionally Left Blank

TABLE OF CONTENTS

SECTION 4

NORMAL PROCEDURES

Paragraph

Page

4	NORM	AL PROCEDURES
4.1		ODUCTION
4.2		PEEDS FOR NORMAL OPERATIONS 4-1
4.3		MAL PROCEDURES CHECKLIST
		EFLIGHT 4-3
	4.3.1.1	Cockpit 4-3
4	4.3.1.2	Nose Section 4-4
4	4.3.1.3	Left Fuselage, Wing and Landing Gear 4-5
	4.3.1.4	Empennage 4-6
	4.3.1.5	Right Fuselage, Wing and Landing Gear 4-7
4	4.3.1.6	General 4-7
4.	3.2 STA	ARTUP AND TAXI
	4.3.2.1	Before Starting Engine 4-8
	4.3.2.2	Starting Engine 4-9
	4.3.2.3	Starting Engine when Flooded 4-9
	4.3.2.4	Warm Up4-10
	4.3.2.5	Taxiing4-10
4.	3.3 FLI(GHT
	4.3.3.1	Before Takeoff4-10
	4.3.3.2	Takeoff4-11
4	4.3.3.3	Climb4-11
4	4.3.3.4	Cruise4-11
4	4.3.3.5	Descent4-11
	4.3.3.6	Approach and Landing4-13
4	4.3.3.7	Go-Around4-14
4	4.3.3.8	Stopping Engine4-14

SECTION 4 NORMAL PROCEDURES

4.4 AMPL	IFIED NORMAL PROCEDURES4-15
4.4.1 PRE	FLIGHT4-15
4.4.1.1	Cockpit4-15
4.4.1.2	Nose Section4-16
4.4.1.3	Left Fuselage, Wing, and Landing Gear4-17
4.4.1.4	Empennage4-18
4.4.1.5	Right Fuselage, Wing, and Landing Gear 4-18
4.4.1.6	General4-18
4.4.2 STA	RTUP AND TAXI4-19
4.4.2.1	Before Starting the Engine4-19
4.4.2.2	Starting the Engine4-19
4.4.2.3	Starting Engine when Flooded4-19
4.4.2.4	Warm Up4-20
4.4.2.5	Taxiing4-20
4.4.3 FLIC	GHT4-20
4.4.3.1	Before Takeoff4-20
4.4.3.2	Takeoff4-23
4.4.3.3	Climb4-23
4.4.3.4	Cruise4-23
4.4.3.5	Descent4-24
4.4.3.6	Approach and Landing4-24
4.4.3.7	Short Field Procedures4-26
4.4.3.8	Soft Field Procedures4-26
4.4.3.9	Balked Landing (Go-around)4-27
4.4.3.10	Stopping the Engine4-27

4 NORMAL PROCEDURES

4.1 INTRODUCTION

This section describes the procedures that Cub Crafters recommends for the pilot to follow during normal operations of the aircraft. It is divided into two parts. The first has abbreviated checklists; these are in a format suitable for reference in the cockpit. The second part amplifies the information given in the checklists. It provides the pilot with detailed descriptions that will help him understand the procedures and techniques.

This manual assumes that the pilot is appropriately rated in an aircraft with a conventional, or tailwheel, landing gear configuration.

4.2 AIRSPEEDS FOR NORMAL OPERATIONS

The speeds in this section are based on a maximum weight of 1320 lbs (600 kg) under standard sea-level conditions.

	mph/kts
Never exceed speed (V _{NE})	. 141/123 (IAS)
Operating maneuvering speed (V _A)	93/81 (IAS)
Maximum flap speed (V _{FE})	
15°	85/74 (IAS)
Greater than 15°	81/70 (IAS)
Best rate of climb speed (V _Y)	71/62 (IAS)
Best angle of climb speed (V _x)	50/43 (IAS)
Maximum demonstrated crosswind velocity.	

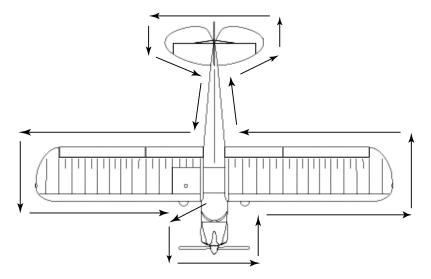


Figure 4-1 Walk around

4.3 NORMAL PROCEDURES CHECKLIST

4.3.1 PREFLIGHT

4.3.1.1 Cockpit

•	Flight controls Free and correct operation
•	Master switch On
•	Trim Check operation and set for takeoff
	(marked on empennage)
•	Fuel selectorBoth
•	Flaps Extend and retract
•	Fuel gaugesSufficient fuel for intended flight
•	Mixture Idle cut-off
•	Carburetor HeatCold
•	Ignition SwitchOff
•	Electrical SwitchesOff
•	Navigation/Strobe Lights (if installed). Check operation
•	Landing Light (if installed) Check operation
•	Stall Warning Horn Check operation
•	Master Switch Off
•	Circuit Breakers (wing root) Check in
•	Circuit Breakers (seat base) Check in
•	Windows Clear
•	Documentation Onboard
•	Master Switch Off
•	Front Seat Adjust
•	Rear SeatCheck and Straps Secure
•	Baggage and CargoSecure

NOTE

Ensure forward bar under passenger seat does not conflict with rudder cables.

NOTE

If passenger seat will be unoccupied, secure seat harness to prevent it from interfering with the flight controls or the pilot during flight.

4.3.1.2 Nose Section

•	Cowl	Secure
٠	Cowl Flaps (if installed)	Secure
٠	Oil Door	Open
•	Oil Quantity	5 Quarts recommended
	-	Check and cap secure
٠	Engine Condition	Check
٠	Oil Door	Close
٠	Propeller and Spinner	Check condition
٠	Air Inlets	Clear of obstructions
٠	Fuel Strainer (forward of fire	wall on left) Drain
٠	Fuel Drain (behind firewall c	on left)Drain*

*For aircraft S/N 00264 and on only

4.3.1.3 Left Fuselage, Wing and Landing Gear

•	Chocks	Remove
•	Tire	Check
•	Brakes and Lines	Check
•	Main Landing Gear Leg and Strut	
•	Fuel Tank	Check quantity
•	Fuel Cap/Vent Check vent is cl	ear and cap secure
•	Pitot Tube	
•	Jury Struts and Brackets	Check condition
•	Stall Warning Vane	Check operation
•	Landing Light (if installed)	Check condition
•	Aileron Control Cable	Check condition
•	Tie Down	Remove
•	Wing Strut	Check condition
•	Vortex Generators	Check
•	Wing Tip and Lights (if installed)	Check condition
•	Aileron Hinges	Check
•	Aileron Surface	
•	Flap Hinges	Check
•	Flap Surface	
•	Left Fuselage	

4.3.1.4 Empennage

•	Bracing Wires and Attach Brackets Check f	or tension
•	Hinges	Check
•	Rudder Cables	Check
•	Beacon and Position Light (if installed)	Check
•	Control Surfaces	Check
•	Tailwheel and Springs	Check
•	Tie Down	Remove

4.3.1.5 Right Fuselage, Wing and Landing Gear

•	Right Fuselage	Check
•	Fuel Sump (under fuselage)	
•	Flap Surface	Check Condition
•	Flap Hinges	
•	Aileron Surface	Check Condition
•	Aileron Hinges	Check
•	Wing Tip and Lights (if installed)	
•	Vortex Generators	Check
•	Tie Down	Remove
•	Wing Strut	Check Condition
•	Jury Struts and Brackets	Check Condition
•	Fuel Cap/Vent Check vent is cle	ear and cap secure
•	Fuel Tank	Check quantity
•	Main Landing Gear Leg and Strut.	Check
•	Brakes and Lines	Check
•	Tire	Check
•	Chocks	Remove

4.3.1.6 General

Check that all wings and other external surfaces are free from frost, ice, snow.

4.3.2 STARTUP AND TAXI

4.3.2.1 Before Starting Engine

•	Preflight Inspection	Complete
•	Seat Belts	Fastened
•	Passenger Briefing	Complete
•	Parking Brakes (on master cylinders)	Both wheels, set
•	DoorCl	osed and latched
•	Fuel Selector	Both
•	Avionics Master Switch	Off
•	Propeller Area	Clear

CAUTION

The parking brake on each main wheel is set by depressing the top of each rudder pedal and rotating the valve on each master cylinder so the lever is oriented horizontally while maintaining pressure on the pedal. To release the brakes, rotate both valves so the levers are oriented vertically. Do not close the valves without any pressure applied to the pedals, as this will not apply the brakes and will allow the aircraft to be moved while the brakes are rendered inoperative for ground operations.

4.3.2.2 Starting Engine

•	Master Switch	On
•	Mixture	Full rich
•	Primer	Apply*
	Throttle	
	Starter	

After engine has started:

•	Oil Pressure	Check
•	Throttle	Set 1000 rpm
•	Ignition Switch	Both
•	Lights	As required
	Avionics Master Switch	-

*Normal procedure three times. If engine is hot, omit this step.

WARNING ENSURE THAT THE PRIMER IS CLOSED AND LOCKED AFTER THE ENGINE HAS STARTED. APPLYING THE PRIMER WITH THE ENGINE RUNNING WILL MAKE THE ENGINE STOP.

4.3.2.3 Starting Engine when Flooded

٠	Mixture	Idle cut-off
٠	Throttle	Full open
٠	Starter	Engage

When engine fires:

٠	Mixture	Rich
٠	Throttle	Retard to 1200 rpm
٠	Ignition Switch	Both
٠	Oil Pressure	Check
٠	Lights	As required
•	Avionics Master Switch.	On

4.3.2.4 Warm Up

• Throttle...... 1000 to 1200 rpm

4.3.2.5 Taxiing

•	Parking Brakes (on master cyl	inders) Release both
•	Taxi Area	Clear
•	Throttle	Apply slowly
•	Brakes	Check
•	Steering	Check

4.3.3 FLIGHT

4.3.3.1 Before Takeoff

•	BrakesSet
•	Throttle 1700 rpm [*]
•	Magnetos Check
	Drop not to exceed 150 rpm or 75 rpm differential
	between magnetos and no engine roughness.
•	Carburetor Heat Hot (note rpm drop then cold)
•	Engine Instruments Check
•	Ammeter (if installed) Check
•	Throttle
•	Throttle 1000 rpm
•	Flight Instruments Check
•	Fuel Selector Both and sufficient quantity for flight
•	Mixture
•	Ignition SwitchBoth
•	Carburetor HeatOff
•	PrimerClosed and locked
•	TrimSet
•	FlapsFirst notch (takeoff)
•	ControlsFree and proper movement
•	DoorClosed
•	Strobes (if installed) As required
•	Transponder and Other AvionicsOn

CUB CRAFTERS CC11-100

SECTION 4 NORMAL PROCEDURES

- Seat Belts Check fastened
 Brakes Release
 Circuit Breakers (wing root)..... Check in
- Circuit Breakers (seat base).....Check in
- Circuit Breakers (instrument panel).....Check in
- Doors and windows Closed
- Landing Lights (if required)On

* When operating at high altitudes and/or temperatures, it may be necessary to lean the mixture for peak rpm.

4.3.3.2 Takeoff

4.3.3.3 Climb

	INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>
٠	Best Rate	71	62
•	Best Angle	50	43
٠	Mixture Lean to	obtain ma	ximum rpm
٠	Carburetor Heat		As required

4.3.3.4 Cruise

•	Power	Adjust
٠	Mixture	Adjust
٠	Carburetor Heat	As required

4.3.3.5 Descent

Power Adjust

Issued: 08/01/06	REPORT SC10000AFM
Date of Revision: 04/09/13	Page Number 4-11

CUB CRAFTERS CC11-100

•	Mixture	Adjust
•	Carburetor Heat	As required

4.3.3.6 Approach and Landing

4.3.3.6.1 Normal Landing

Fuel SelectorSeat Belts	Fa	astened
Mixture		Set
Flaps		Set
INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>
Maximum speed first notch flaps (15°)	85	74
Maximum speed (>15°)	81	70
• Trim	As ree	quired
Speed	As r	equired
(1.3 times full flaps stall speed at gross weight	ght is 42	mph or
36 knots IAS)		
Doors and windows		Closed

4.3.3.6.2 Crosswind Landing

 Fuel Selector Seat Belts Mixture 	Fas	stened
Flaps INDICATED AIRSPEED (IAS)		
Maximum speed first notch flaps Maximum speed (>15°) • Trim • Speed (A higher speed than norm	81 As rea As rea	70 quired quired

 Ailerons-Rudder...... On short final Use ailerons to keep upwind wing low Rudder to hold runway alignment
 Touchdown.... Do not drift sideways during touchdown
 Landing Roll...... Use ailerons to keep upwind wing down, rudder and brakes to maintain directional control

4.3.3.7 Go-Around

•	Throttle	Full power
•	Carburetor Heat (if applicable)	Off
	Airspeed	
		or 45 knots
•	Flaps	Retract slowly
٠	Trim	As required

4.3.3.8 Stopping Engine

Parking Brakes	Set
Flaps	Retract
Electrical Equipment	Off
Avionics Master Switch	Off
Throttle	Idle
Mixture	Idle cut off
Ignition Switch	Off
Master Switch	Off
	Parking Brakes Flaps Electrical Equipment Avionics Master Switch Throttle Mixture Ignition Switch Master Switch

4.4 AMPLIFIED NORMAL PROCEDURES

4.4.1 PREFLIGHT

4.4.1.1 Cockpit

Enter the cockpit and operate the flight controls to ascertain that they operate freely in the correct sense. As a rule of thumb, if the stick is moved towards a control surface, that surface must go up. Make sure that the passenger (or cargo being carried in place of the rear seat) will not limit the travel of the control stick in any direction.

Set the leading edge of the horizontal stabilizer (pitch trim) to the takeoff position using the rocker switch on the control stick. Ensure that the stabilizer moves smoothly. The trim is in the takeoff position when the leading is within the marks on the left side of the empennage.

Check the flaps by lowering them to all positions and retracting them. Check that the detent on the handle engages in all positions.

Set the fuel selector to BOTH. Ensure that there is enough fuel for the intended flight by checking the sight gauges.

The mixture should be in the idle/cut-off position and the carburetor heat in the off (cold) position.

Ensure that the ignition switch is off.

Check that all the electrical systems that will be used for the flight operate as intended. To confirm that the stall warning is functioning correctly, have someone gently

operate the vane on the leading edge of the left wing with the master switch on. The stall horn should sound. After operating the electrical system, make sure that all circuit breakers are in. note that some are located on the left upper wing root, others on the forward part of the seat base and the instrument panel.

Check that the windows are clean and clear of frost or snow.

Ensure that all the documentation required for the flight is onboard. This includes charts, airworthiness certificate, registration certificate, aircraft flight manual, weight and balance data, etc.

Adjust the position of both the front seat.

Turn the master switch off before leaving the cockpit.

Verify rear seat straps are correctly routed through slide adjusters, as shown in Section 7.6. If no passenger is being carried, secure the aft seat belts and harnesses.

4.4.1.2 Nose Section

As you make your way around the forward part of the aircraft, inspect the condition of the fiberglass cowling for cracks and insure the fasteners are secure.

Open the oil door on the right-hand side of the cowling. Check the oil quantity. Maximum capacity is six (6) U.S. quarts and the minimum is four. Ensure that the oil filler cap is secure. Inspect the engine through the door and then close and secure it.

Check the propeller for nicks and the spinner for security and cracks.

Look through the air inlets on the front of the cowl and visually inspect the condition of the engine.

Check the general condition of the exhaust system. Drain fuel from both the gascolator and the lower left drain (S/N 00264 and on), and inspect for water and sediment. Dispose of the fuel in an appropriate manner.

For aircraft without the additional side drain installed the following is to be completed whenever the aircraft has been parked:

- In conditions where condensation may have accumulated in the fuel system.
- In heavy or prolonged precipitation.
- Whenever there is any question that water may have accumulated in the fuel system.
- 1. Gently rock the wings of the aircraft.

2. Drain at least 1/8 gallon of fuel from the drain on the lower right side and the fuel gascolator on the forward left side. If water is present in the fuel, drain at least 1/8 gallon past the point when water was last observed.

 Jack the tail of the aircraft to flight level attitude (Reference SSC10000AMM Sections 6.3.2.1 & 6.3.2.2).
 Repeat Step 2.

4.4.1.3 Left Fuselage, Wing, and Landing Gear

Check the general condition of the left side of the fuselage.

Inspect the landing gear, tires, brakes, and shock absorber for condition and remove any chocks from under the wheel. Check the fuel cap by standing on the step provided on the landing gear. Visually check the fuel

level in the wing tank and insure there are no obstructions in the vent tube.

As you walk along the leading edge of the wing, look for dents, ensure that the tie downs have been removed, and gently operate the stall warning vane. Ensure that all the vortex generators are in place. If one should be missing, there will be a mark on the paint of the wing where it should be. Check the landing light lens for cracks and check the security of the wingtip light assembly (if installed). Check the general condition of the wings, lift struts, jury struts and wing tip. Check the flaps and ailerons for general condition. Pay particular attention to the hinges to make sure they are secure and the cotter pins are in place.

4.4.1.4 Empennage

Check the tail surfaces for general condition and the tail wire bracing for security and tension. The hinges should all be secured with cotter pins. Check the condition of the tailwheel and the springs. Check the rudder cable for condition and proper attachment. Check the condition of the lights on the rudder (if installed). Remove the tie down.

4.4.1.5 Right Fuselage, Wing, and Landing Gear

Repeat the procedure carried out on the left wing, fuselage side, and landing gear.

4.4.1.6 General

Before re-entering the cockpit, make sure that the entire aircraft is free of snow or frost.

4.4.2 STARTUP AND TAXI

4.4.2.1 Before Starting the Engine

Adjust the pilot seat using the pins on the sides of the seat-base. The pins must be securely installed prior to flight. Adjust the straps to accommodate the passenger. Make certain the forward bar under the passenger seat does not conflict with the control systems. Seat belts should be fastened and the passenger briefed. Close the door. Engage the parking brakes, which are individual valves located on each brake master cylinder. Ensure that the fuel selector is in the BOTH position. Verify that the avionics master switch is off and ensure that the propeller area is clear.

4.4.2.2 Starting the Engine

Turn the master switch on. Push the mixture control in to full rich. If the engine is cold, it may be desirable to prime the engine. To do this, rotate the primer control until it unlocks, pull it out, allowing the pump to fill with fuel, and push it in, normally three times (more priming may be required in colder weather). After priming, make sure the control is locked. Open the throttle 1/2 inch. Verify the propeller area is clear and engage the starter. Oil pressure should rise within 30 seconds; otherwise, shut the engine down. Turn on any lights that may be required. The avionics master may now be switched on and the radios tuned, as necessary.

4.4.2.3 Starting Engine when Flooded

The throttle should be in the full open position. Turn the master switch on. The mixture control should be in the idle cut-off position. Verify the propeller area is clear and engage the starter. As soon as the engine starts, move the mixture control to the rich position and retard the

Issued: 08/01/06 Date of Revision: 04/09/13

throttle. Oil pressure should rise within 30 seconds; otherwise, shut the engine down.

4.4.2.4 Warm Up

Before takeoff the engine should be warmed up for two to three minutes minimum, although longer may be required when the temperatures are below freezing. The engine is warm enough when it idles at around 600 rpm and accelerates smoothly. Ensure the oil pressure is within the green arc on the gauge.

Avoid running the engine at idle for too long, as it will tend to foul the spark plugs.

If you need to add power over loose stones or gravel, do so carefully to avoid damaging the propeller.

4.4.2.5 Taxiing

Before starting to taxi, make sure that the propeller blast will not affect the area behind the aircraft and that there are no unapproved, unqualified people close to the aircraft.

Release the parking brakes. Apply power and keep the elevator control stick back at all times. Apply both brakes and steer from side-to-side to make sure the aircraft is controllable on the ground.

4.4.3 FLIGHT

4.4.3.1 Before Takeoff

When the run-up area is reached, set the parking brake. Perform the magneto check at 1700 rpm, as follows:

 Switch to the left magneto and note the rpm. Switch back to both.

CUB CRAFTERS CC11-100

• Switch to the right magneto, noting the rpm, and turn back to both.

The drop should not exceed 150 rpm on either magneto or show greater than a 75 rpm difference between magnetos. The engine should run smoothly on either magneto. If there is no drop in rpm, there may be a fault in the system and it should be checked. Do not run the engine on one magneto for longer than 10 seconds. If both magnetos are switched off while the engine is running, do <u>not</u> turn them back on. Cut the mixture and re-start the engine. If the magnetos are turned back on while the engine is running, damage may be done to the exhaust system and the engine should be inspected prior to flight.

Apply the carburetor heat to be sure that it is operating. You will note a drop of about 50 to 75 rpm when it is applied. This will also clear any ice that may have formed during taxiing. Bear in mind that when the carburetor heat is applied, unfiltered air is entering the engine. Therefore, its use on the ground should be kept to a minimum.

The presence of ice may be recognized by the fact that the engine may momentarily run roughly when the carburetor heat is applied. This may be followed by an increase in rpm. When the carburetor heat is removed, the rpm may increase beyond 1700 rpm.

Check all engine parameters. Apply an electrical load (for example, by switching on the landing light) and observe that there is an increase in the electrical current drawn from the alternator (if an ammeter is installed).

Retard the throttle to idle to verify that the engine runs smoothly at minimum rpm (at least 600 rpm). Advance it to 1000 rpm.

In hot and high conditions, especially above 3,000 feet, it is important to lean the mixture prior to the magneto check. To do this, apply full power. Slowly lean the mixture until you observe the peak RPM. Retard the throttle slowly and proceed with the rest of the run-up.

Prior to takeoff, verify that the flight instruments operate correctly. Ensure that the fuel selector is on BOTH, the mixture is set, and the carburetor heat in the cold position. Engine gauges should be in the normal ranges. Flaps should be selected for takeoff; first notch (15°) is recommended. The door should be closed and seat belts fastened.

4.4.3.2 Takeoff

4.4.3.2.1 Normal Takeoff

The normal takeoff technique uses the first notch (15°) of flaps. Align on the runway and open the throttle. Maintain directional control at all times using appropriate rudder inputs. With the elevator in neutral, allow the tail to come up. At about 52 mph or 45 knots IAS, apply back pressure on the stick until the aircraft leaves the runway.

4.4.3.3 Climb

The best rate of climb speed (V_Y) at gross weight is 71 mph or 62 knots IAS and best angle (V_X) is at 50 mph or 43 knots IAS, with flaps up.

Normal en-route climbs should be carried out at 80 to 90 mph or 70 to 78 knots. While climbing, lean the mixture to achieve maximum engine speed. Consider the use of carburetor heat if weather conditions that may produce carburetor icing prevail.

4.4.3.4 Cruise

Once cruising altitude is reached, set the power. Normal cruising is performed between 55% and 80% power. As the aircraft accelerates, rpm will increase. Do not exceed 2750 rpm. Reduce the power to the selected setting and adjust the mixture. The engine may be leaned by slowly pulling the mixture back until there is a drop in rpm or the engine runs roughly. At this point, advance the mixture slightly (about 1/8 of an inch) or until the engine runs smoothly.

NOTE

With a new engine, try to use 75% power as often as possible until either a total of 50 hours of operations have been accumulated or the oil consumption has stabilized. This will ensure that the piston rings seat correctly.

4.4.3.5 Descent

During descent, use the carburetor heat as required. Take care not to exceed the maximum speed of the engine (2750 rpm). Also, use caution to prevent shockcooling the engine by descending at high airspeeds with too low of a throttle setting. Enrich the mixture as you descend.

4.4.3.6 Approach and Landing

Flaps may be lowered to the first notch (15°) when the airspeed is below 85 mph or 74 knots IAS. The maximum speed for more flaps (>15^{\circ}) is 81 mph or 70 knots IAS.

CAUTION

Plan the pattern so steep turns are not required when turning from down-wind to base leg and from base leg to final. Steep turns increase stall speed (Fig 5-2 and 5-3, Stall Speed Versus Angle of Bank). Steep turns, low power, and slow airspeed can be dangerous, particularly if the airplane is heavily loaded and/or with gusty or turbulent wind conditions.

4.4.3.6.1 Normal Landing

The normal landing in the aircraft is in a three-point, stalled condition. Adjust the throttle and pitch attitude to compensate for ground effect as the aircraft approaches the runway. At approximately 10 feet AGL, smoothly begin landing flare to attain a three-point attitude. Maintain this attitude and adjust the throttle to accomplish

REPORT SC10000AFM Page Number: 4-24 a smooth touchdown. Gradually bring the stick back, keeping it back throughout the landing roll. Maintain directional control with rudder and differential braking, as necessary.

It is possible to settle the aircraft on the ground at higher speeds in a two-point configuration. The landing flare is kept flat, aiming to place the main landing gear wheels on the runway at a minimum sink rate. When the wheels contact the ground, the stick must be moved forward to counteract the pitching up reaction of the aircraft. After the aircraft has slowed down, the tail may be brought down with the stick. Bear in mind that the rudder will begin to lose effectiveness as airspeed is reduced. Maintain directional control. Apply brakes as necessary.

4.4.3.6.2 Crosswind Landing

When established on a short final approach, use the ailerons and rudder to maintain the approach path. Lower the upwind wing using ailerons and use the rudder to hold runway alignment. At approximately 10 feet AGL, increase the pitch attitude to flare. Ensure that the aircraft is not drifting sideways when touching down. When a satisfactory touchdown has been accomplished, reduce the throttle to IDLE and adjust ailerons slightly to allow the downwind main wheel to touch down.

Maintain the stick deflected into the wind as necessary to keep the upwind wing from lifting, and use rudder and differential braking, as necessary, to maintain directional control. Once the three wheels are on the ground, move the stick all the way back and keep it there at all times during the landing roll. Apply brakes only as required to maintain directional control, slow to taxi speed or stop.

NOTE

It is recommended that a slightly higher airspeed be used on final approach during gusty or turbulent wind conditions. Add approximately one (1) mph or one (1) knot IAS for each two (2) knots of reported gust.

4.4.3.7 Short Field Procedures

4.4.3.7.1 Takeoff

Using the first notch of flaps (15°), add power while holding the aircraft on the brakes. Release the brakes and allow the tail to rise. Rotate at about 40 mph or 35 knots, accelerate to V_X (50 mph or 43 knots) and climb out until obstacle clearance is achieved, then raise flaps and decrease climb rate as desired.

4.4.3.7.2 Landing

Make a normal approach and use two notches of flaps (35°). After clearing obstacles, the third notch/full flaps (50°) should be used for the final descent to the landing area. Power should be used as required to arrest the descent.

4.4.3.8 Soft Field Procedures

For soft field operations, proper use of the elevator and very mild braking should be exercised to prevent the aircraft from getting stuck or nosing over. Takeoff should be performed in three-point configuration. Landings should be made in three-point configuration, concentrating on a soft touch-down.

4.4.3.9 Balked Landing (Go-around)

In a balked landing, apply full power. Slowly retract the flaps to the first notch (15°) and establish a positive rate of climb. Maintain climb speed. Trim as required.

4.4.3.10 Stopping the Engine

The parking location should be free of loose material such as gravel, debris, or unsecured tie down ropes, which could be blown up by the propeller.

When the aircraft is parked, turn off all electrical equipment, including avionics. The engine must always be stopped by pulling the mixture control to the idle cutoff position. Turn the ignition switch off. Finally, turn the master switch off.

NOTE

Any device(s) plugged into an accessory port may drain the battery.

After the airplane has been positioned, release the brakes and determine whether the airplane is likely to roll as the crew exits. If so, set the parking brakes by turning the valve on each brake master cylinder while applying force to the brake pedals. Retract the flaps to prevent damage to the flaps and their operating mechanism in the event of strong winds from the tail direction.

Install wheel chocks, if available. Tie down both the wing and the tail. Straps or ropes are preferred over chains. Tie-downs should be firmly secured but without excessive tension. Close cabin windows and door.

INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

SECTION 5

PERFORMANCE

Paragraph

Page

5 PERFORMANCE

5-1
HARTS5-3
IBRATION5-4
5-5
5-7
ND GRADIENT5-9
5-10
5-11
NG5-13
5-14

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 5-ii

Issued: 08/01/06 Date of Revision: 10/31/11

5 PERFORMANCE

5.1 INTRODUCTION

The purpose of this section is to provide information that will assist the pilot with planning a flight in detail with reasonable accuracy.

All data has been corrected to I.C.A.O. standard day conditions. Where appropriate, the data has been expanded analytically for variations in weight, altitude, temperature, etc.

The data has been derived from actual flight tests, taking into account the proficiency of an average pilot. The pilot must use sound judgment when assessing the effect of conditions not found in the charts, such as soft runways and winds aloft. The parameters will be affected by the performance of the engine. Therefore, the pilot must be thoroughly familiar with its operation, including the procedures for adjusting the mixture control.

Data should not be extrapolated beyond the limits shown on the charts.

All information is presented in the units used on the aircraft's instrumentation.

- Airspeeds will be presented in statute miles per hour
- Weights in pounds
- Altitudes in feet
- Temperatures in degrees Fahrenheit
- Wind speed in nautical miles per hour

The aircraft may be equipped with different tires and propellers. All of the data presented in this chapter are based on an aircraft equipped with the McCauley Propeller Systems model 1B90/CM7141 propeller and 8.50x6.00-6 tires.

Different combinations of propellers and tires will affect the performance of the aircraft.

5.2 PERFORMANCE CHARTS

Figure 5-1 Airspeed System Calibration	5-4
Figure 5-2 Stall Speed versus Angle of Bank	5-5
Figure 5-3 Takeoff Ground Distance	5-7
Figure 5-4 Maximum Rate and Gradient of Climb	5-9
Figure 5-5 Cruise Speed	5-10
Figure 5-6 Landing Distance from 50' Obstacle	5-11
Figure 5-7 Balked Landing Climb Gradient	5-13
Figure 5-8 Glide Performance	5-14

5.2.1 AIRSPEED CALIBRATION

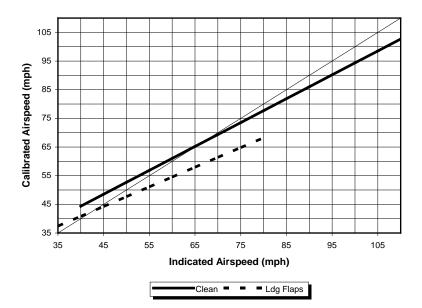


Figure 5-1 Airspeed System Calibration

NOTE

Indicated airspeed assumes zero instrument error.

NOTE

Airspeed indication can vary by several miles per hour depending on whether the fresh air vents and the door and windows are open or closed. All values listed in this document are for indications with the vents, windows, and the door in the closed position.

5.2.2 STALL SPEED

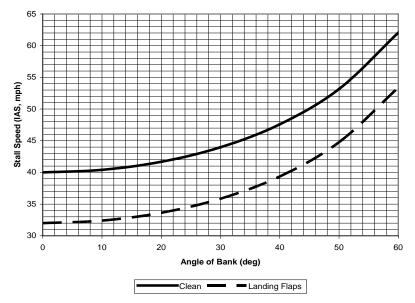
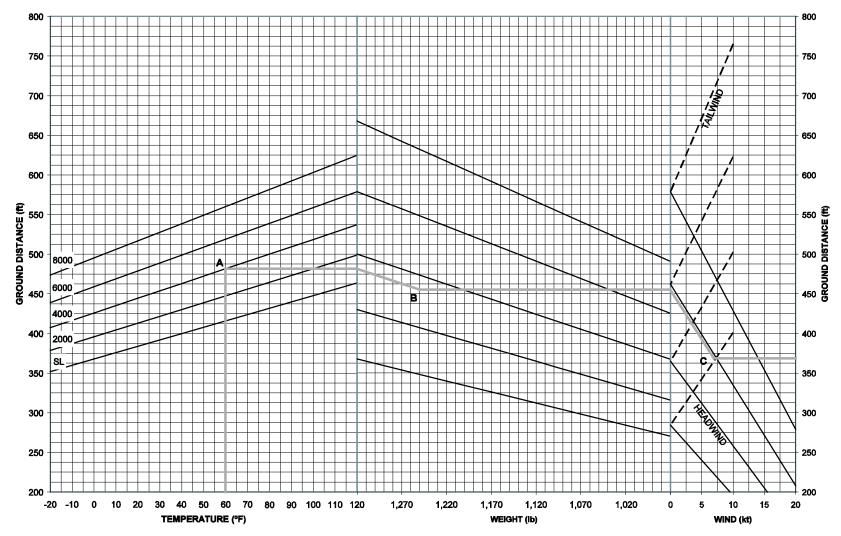


Figure 5-2 Stall Speed versus Angle of Bank


INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 5-6

Issued: 08/01/06 Date of Revision: 10/31/11 CUB CRAFTERS CC11-100

5.2.3 TAKE OFF

5.2.3.1 Normal takeoff

Issued: 08/01/06 Date of revision: 10/31/11 REPORT SC10000AFM Page number: 5-7 Example: Takeoff conditions

Outside air temperature (OAT)	60º F
Pressure altitude at airport	4000 feet
Aircraft weight	1250 lbs.
Headwind	7 kts.

On the graph at the furthest left of the chart, identify point A where the OAT intersects with the pressure altitude at the airport. Note the pressure altitude lines on the chart are at even thousands of feet. If the field altitude is between two lines, place point A between the appropriate lines at approximately the correct spacing. Extend a line horizontally from point A to the reference line on the second graph (the one in the center). From there, follow parallel to the weight lines until you reach 1250 lbs. This is point B.

Extend a line horizontally from point B to the reference line on the graph on the right. From there, follow parallel to the wind lines until you reach 7 knots. This is point C.

From point C extend a line horizontally to the axis on the far right of the chart. This will give you the takeoff ground distance (approximately 370 ft) under the conditions listed above, assuming a smooth runway with no appreciable slope.

5.2.4 CLIMB RATE AND GRADIENT

Pressure	Indicated Airspeed		ΟΑΤ	Climb	
Altitude (ft)		МРН	Knots	(°F)	Gradient (%)
0		70	60	0	5
2000	59 °F Below	70	60	-7	5
4000	Std Temp	71	61	-14	4
6000		71	61	-21	4
8000		72	62	-28	3
0		70	60	32	5
2000		71	61	25	4
4000	27°F Below Std Temp	71	61	18	3
6000		72	62	11	3
8000		72	62	4	3
0		71	61	59	4
2000		71	61	52	4
4000	Std Temp	72	62	45	3
6000		72	62	38	3
8000		73	63	31	2
0		71	61	75	4
2000		71	61	68	3
4000	16° Above Std Temp	72	62	61	2
6000		73	63	54	2
8000		74	64	47	2
0		71	61	100	4
2000	440 Aba	72	62	93	3
4000	41° Above Std Temp	73	63	86	2
6000		73	63	79	2
8000		74	64	72	1

Figure 5-4 Maximum Rate and Gradient of Climb

NOTE
Mixture leaned for maximum RPM.

Issued: 08/01/06 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 5-9

SECTION 5 PERFORMANCE

5.2.5 CRUISE

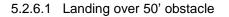

Pressure		%	True A	rspeed	Fuel Flow
Altitude RPM (ft)		Power	MPH	Knots	(gph)
	1950	63	96	83	5.2
	2150	73	101	87	5.7
2000	2350	81	106	92	6.0
	2550	86	107	93	6.0
	2750	94	110	95	6.4
	1950	60	92	80	5.0
	2150	68	97	84	5.3
4000	2350	76	102	88	5.6
	2550	80	103	89	5.6
	2750	88	107	93	6.0
	1950	56	82	71	4.7
	2150	64	91	79	5.0
6000	2350	66	90	78	4.9
	2550	75	99	86	5.2
	2750	82	102	88	5.6
	1950	52			4.3
8000	2150	60			4.7
	2350	66	85	74	4.9
	2550	70	89	77	4.9
	2750	76	94	81	5.2

Figure 5-5 Cruise Speed

Indicates that altitude cannot be maintained at this power setting

CUB CRAFTERS CC11-100

5.2.6 LANDING

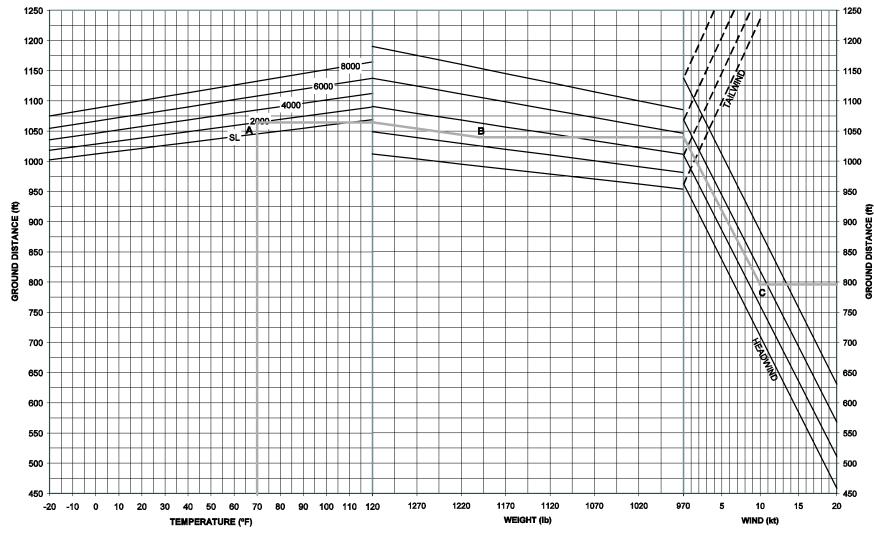


Figure 5-6 Landing Distance over 50' Obstacle

Issued: 08/01/06 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 5-11 Example: Landing conditions

Outside air temperature (OAT)	70 °F
Pressure altitude at airport	2000 feet
Aircraft weight	1200 lbs
Headwind	10 kts

On the graph at the furthest left of the chart, identify point A where the OAT intersects with the pressure altitude at the airport. Note the pressure altitude lines on the chart are at even thousands of feet. If the field altitude is between two lines, place point A between the appropriate lines at approximately the correct spacing. Extend a line horizontally from point A to the reference line on the second graph (the one in the center). From there, follow parallel to the weight lines until you reach 1200 lbs. This is point B.

Extend a line horizontally from point B to the reference line on the graph on the right. From there, follow parallel to the wind lines until you reach 10 knots. This is point C.

From point C extend a line horizontally to the axis on the far right of the chart. This will give you the total landing distance to clear a 50' obstacle (approximately 790 ft.) under the conditions listed above, assuming a smooth runway with no appreciable slope.

5.2.7 BALKED LANDING

Pressure	Airspeed (IAS)		Climb
Altitude (ft)	MPH	KNOTS	Gradient (%)
4,000	70	60	2.3

Figure 5-7 Balked Landing Climb Gradient

NOTE	
First notch flaps (15°)	
Mixture leaned for peak RPM	

SECTION 5 PERFORMANCE

5.2.8 GLIDE

Statute Miles	Nautical Miles	Altitude Loss (ft)
1.4	1.2	1000
2.8	2.5	2000
4.3	3.7	3000
5.7	4.9	4000
7.1	6.2	5000
8.5	7.4	6000
9.9	8.6	7000
11.3	9.9	8000
12.8	11.1	9000
14.2	12.3	10000
15.6	13.6	11000
17.0	14.8	12000
18.4	16.0	13000
19.8	17.2	14000

Figure 5-8 Glide Performance

NOTE

At 1320 lbs, glide speed 68 mph or 59 knots, flaps up

TABLE OF CONTENTS

SECTION 6

WEIGHT AND BALANCE

Paragraph

Page

6	WI	EIGHT AND BALANCE	
	6.1	INTRODUCTION	6-1
	6.2	PERTINENT INFORMATION FOR WEIGH	
	6	.2.1 TERMINOLOGY	6-3
	6.3	WEIGHING PROCEDURES	6-5
	6	.3.1 PREPARATION	6-5
	6	.3.2 LEVELING	6-6
	6	.3.3 WEIGHING	6-8
	6.4	WEIGHT AND BALANCE DATA AND REC	
	6.5	WEIGHT AND BALANCE DETERMINATION	NC
		FOR FLIGHT	6-15
	6.6	SAMPLE WEIGHT AND BALANCE	
		CALCULATION	6-18

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 6-ii

Issued: 08/01/06 Date of Revision: 10/31/11

6 WEIGHT AND BALANCE

6.1 INTRODUCTION

This section provides two very important pieces of information. Section 6.3 describes the methods for determining the empty weight of the aircraft and the position of the center of gravity relative to the datum. Section 6.5 supplies the information necessary to calculate the takeoff weight and the position of the center of gravity for a given flight. An example is provided in paragraph 6.6.

Weight and balance limits are placed on aircraft for two reasons:

- The structure was designed to carry a certain maximum weight.
- Weight and the position of the center of gravity affect both the performance and the stability and control characteristics, particularly in stall and spin recovery.

The aircraft will only attain the performance and exhibit the handling characteristics used for certification if it is flown with the center of gravity within the approved range. An overloaded aircraft will not take off, climb, or cruise as well as a properly loaded one. The center of gravity is a determining factor in flight characteristics. If the CG is too far forward, the aircraft will require high stick forces for control and increases the risk of nosing over on the ground. If the CG is too far aft, the aircraft may pitch up during climb. Longitudinal and directional stability will be reduced. This can lead to inadvertent stalls and even spins. Spin recovery will become more difficult, if not impossible.

SECTION 6 WEIGHT AND BALANCE

The aircraft will perform as intended when it is properly loaded. Before it was delivered, the aircraft was weighed and the CG location was computed. You will find this information in Section 6.4.

6.2 PERTINENT INFORMATION FOR WEIGHT AND BALANCE

Position of datum 60 inches ahead of wing leading edge

Maximum gross weight......1320 lbs

Forward CG Limits

At 1320 lbs73.0 inches aft of datum At 1100 lbs or less70.5 inches aft of datum (Straight line variation between points given)

Aft CG Limit (at all weights)78.5 inches aft of datum

Note that the aircraft can be equipped with different propellers and tires. These will affect weight and balance and performance.

Optional equipment must be included in the weight and balance data when it is installed.

6.2.1 TERMINOLOGY

Arm	The horizontal distance from the reference datum to the center of gravity (CG) of an item.
Basic Empty Weight	Standard empty weight plus optional equipment.
Center of gravity (CG)	The point at which an aircraft or an item of equipment would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight.
CG Arm	The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.
CG Limits	The extreme center of gravity limits within which the aircraft must be operated at a given weight.
Datum	An imaginary vertical plane from which all horizontal distances are measured for balance purposes.

SECTION 6 WEIGHT AND BALANCE

Moment	The product of the weight of an item multiplied by its arm.
Maximum Takeoff Weight	Maximum weight approved for the start of the takeoff run.
Standard Empty Weight	Weight of a standard airplane, including unusable fuel, full operating fluids and oil (5 qts).
Unusable fuel	The quantity of fuel at which the first evidence of malfunctioning occurs under the most adverse fuel feed condition.
Useful load	Difference between takeoff weight and basic empty weight.

6.3 WEIGHING PROCEDURES

This procedure is to be followed for weighing the landplane. To weigh aircraft equipped with floats, consult the maintenance manual, document SC10000AMM.

6.3.1 PREPARATION

Make sure that all of the equipment listed in the Aircraft Equipment List (Section 6.4) is installed and is in the proper location.

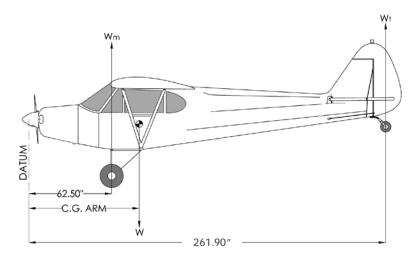
- 1. Remove any items not listed on the Aircraft Equipment List (such as rags, charts, tools, etc.).
- 2. Clean the aircraft to remove excess dirt and grease.
- 3. Remove the fuel from the aircraft. This may be accomplished by opening the fuel drains until all remaining fuel is drained.
- 4. Check that the oil is full (Approximately 5 quarts on the dip stick).
- 5. Position the pilot's seat in the mid-range position. Retract the flaps, place all controls in neutral, and close the door and windows.
- 6. Place the aircraft in a hangar with the doors closed where the wind will not affect the readings of the scales.

6.3.2 LEVELING

Have a set of calibrated weighing scales available. The range should be 1000 lbs for each main and 250 lbs for the tail. Zero the scales or record the tare, as appropriate.

- 1. Place the aircraft approximately in a flight level attitude by supporting the tail wheel on a bench.
- 2. Place the aircraft on the calibrated weighing scales.
- 3. Level the aircraft as follows:
 - Place a spirit level on the open door edge as shown in Figure 6-1. Lower or raise the tail until the aircraft is level. If necessary, this may be accomplished by letting air out of the tires.
 - Place the level on the upper forward cross tube located in the cabin just behind the windshield, as shown in Figure 6-2. Center the bubble to level the wings.

Figure 6-1 Leveling the Aircraft


Figure 6-2 Leveling the Aircraft

Issued: 08/01/06 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 6-7

SECTION 6 WEIGHT AND BALANCE

6.3.3 WEIGHING

1. Once the aircraft has been leveled, record the weight on the main wheels and the tailwheel.

Figure 6-3 Standard Aircraft Geometry

* 59.50 for aircraft equipped with 3X3 landing gear.

Standard Aircraft CG Calculation:

$$CGArm = \frac{(W_m \times 62.50) + (W_t \times 261.90)}{W}$$

3X3 Landing Gear Equipped Aircraft CG Calculation:

$$CGArm = \frac{(W_m \times 59.50) + (W_t \times 261.90)}{W}$$

Where:

CG Arm	=	Distance from the datum to the center of gravity (in inches)
W	=	Total weight of the aircraft
W _m	=	Sum of the weight on both main wheels
W_t	=	Weight on the tailwheel

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 6-10 Issued: 08/01/06 Date of Revision: 10/31/11

6.4 WEIGHT AND BALANCE DATA AND RECORD

Table 6-1 shows the following information at the time when the aircraft was licensed at the factory:

- Basic empty Weight
- Center of Gravity
- Useful Load

MODEL CC11-100

Aircraft Serial Number: Registration Number: Date:

Basic empty	Arm	Moment	
weight (lbs)	(inches)	(in·lbs)	

Table 6-1 Basic Empty Weight

Useful load = Maximum takeoff weight- Basic empty weight

= 1320 - _____

= ____ lbs

This basic empty weight, CG, and useful load are for the aircraft as it was licensed at the factory. Please refer to the appropriate aircraft records to determine the latest information, as the aircraft may have been altered.

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 6-12

Issued: 08/01/06 Date of Revision: 10/31/11

MODEL:		SERIAL NUMBER		REGISTRATION NUMBER			PAGE NUMBER	
CC11	I-100		_				_	
	Item	Description of Article or	Added (+)	Weight Change			Running Basic Empty Weight	
Date	No.	Modification	Removed (-)	Wt (lb.)	Arm (in.)	Moment	Wt (lb.)	Moment
		Original Equipment List						
	1							
	2							
	3							
	4							
	5							
	6							
	7							
	8							
	9							
	10							
	11							
	12							
	13							
	14							
	15							
	16							
	17							
	18							
		The above items are included in the empty weight.						

INTENTIONALLY LEFT BLANK

6.5 WEIGHT AND BALANCE DETERMINATION FOR FLIGHT

In order to calculate the weight and balance of the aircraft:

- 1. Insert the respective loads in Table 6-3 or 6-4.
- 2. Multiply each load by its respective arm and note the moment.
- 3. Add the loads to calculate the takeoff weight
- 4. Add the moments to compute the total moment.
- 5. Divide the moment by the takeoff weight. This is the final position of the center of gravity.
- 6. Plot the point on Figure 6-4. If it is within the weight and balance envelope, the aircraft is within the approved envelope.

SECTION 6 WEIGHT AND BALANCE

Item	Weight (lbs)	Moment Arm (in)	Moment (in·lbs)
Aircraft Empty			
Fuel		83.90	
Pilot		71.40	
Passenger		96.08	
Forward Cargo Compartment (100 lb max)		110.40	
Extended Cargo Compartment (20 lb max)		134.40	
TOTAL			
CG Station:			

Table 6-3 Weight and Balance Loading Form

Item	Weight (Ibs)	Moment Arm (in)	Moment (in·lbs)
Aircraft Empty			
Fuel		83.90	
Pilot		71.40	
Passenger		96.08	
Forward Cargo Compartment (100 lb max)		110.40	
Extended Cargo Compartment (60 lb max)		138.40	
TOTAL			
CG Station:			

Table 6-4 Weight and Balance Loading Form Extended Cargo Compartment

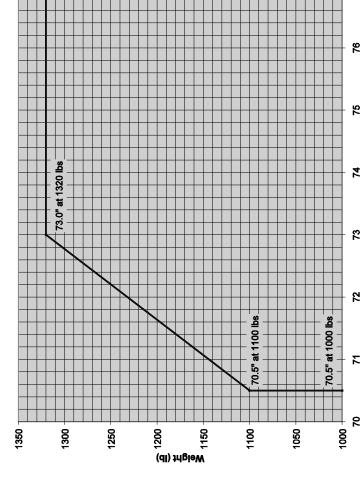


Figure 6-4 Weight and Balance Envelope

Inches Aft of Datum

CUB CRAFTERS CC11-100

78.5" at 1320 lbs

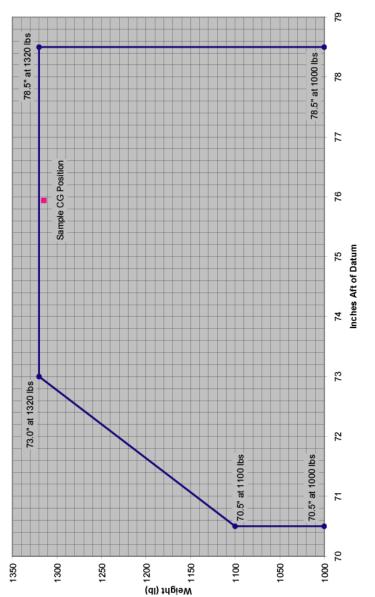
SECTION 6 WEIGHT AND BALANCE

79

1

78.5" at 1000 lbs-

Issued: 08/01/06 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 6-17


6.6 SAMPLE WEIGHT AND BALANCE CALCULATION

This section will provide a sample weight and balance calculation using the methods given in paragraph 6.5.

Item	Weight (lbs)	Moment Arm (in)	Moment (in·lbs)
Aircraft Empty	883	72.28	63825.5
Fuel	120	83.90	10068.0
Pilot	170	71.40	12138.0
Passenger	130	96.08	12490.4
Forward Cargo Compartment (100 lb max)	12	110.40	1324.8
Extended Cargo Compartment (20 lb max)	0	134.40	0.0
TOTAL	1315		99846.7
CG Station:	75.9		

Table 6-5 Sample Weight and Balance

SECTION 6 WEIGHT AND BALANCE

CUB CRAFTERS CC11-100

Issued: 08/01/06 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 6-19

Figure 6-5 Sample CG Location

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 6-20

Issued: 08/01/06 Date of Revision: 10/31/11

TABLE OF CONTENTS

SECTION 7

AIRCRAFT AND SYSTEMS

Paragraph

Page

7 AIRCRAFT SYSTEM AND DESCRIPTION	
7.1 INTRODUCTION	
7.2 AIRFRAME	7-1
7.3 LANDING GEAR	7-2
7.4 FLIGHT CONTROLS	
7.5 POWERPLANT	7-4
7.5.1 ENGINE	
7.5.2 ENGINE MOUNT	
7.5.3 PROPELLER	
7.5.4 ENGINE COWLING	
7.5.5 EXHAUST SYSTEM	
7.5.6 IGNITION SYSTEM	
7.5.7 AIR INDUCTION SYSTEM	
7.5.8 OIL SYSTEM	
7.5.9 FUEL SYSTEM	
7.5.10 ELECTICAL SYSTEM	
7.5.11 LIGHTS	
7.5.12 STALL WARNING	
7.5.13 PITOT-STATIC SYSTEM	
7.6 COCKPIT	
7.7 INSTRUMENT PANEL	
7.8 CABIN HEAT	
7.9 BAGGAGE AND CARGO COMPARTMEN	-
7.10 ELT OPERATION AND LOCATION	-
7.11 MUSIC JACK	7-16

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 7-ii

7 AIRCRAFT SYSTEM AND DESCRIPTION

7.1 INTRODUCTION

This section gives a description of the operation of the aircraft systems and standard equipment. For information and operation of optional equipment, please refer to Section 9.

7.2 AIRFRAME

The structure of the fuselage consists of a truss made of high-strength steel tubing. The members are joined together using inert gas fusion welding. The steel structure is powder coated to protect it from corrosion.

The wing is made up of a framework of stamped aluminum ribs mounted onto extruded wing spars. Tubular drag and compression struts and high strength stainless steel drag wires make up the rest of the structure. The leading edges are covered with aluminum sheet. The wing tip is made from fiberglass and is fairly flexible, enabling it to withstand some abuse.

The wings attach onto the fuselage with hinge fittings and are supported by two lift struts. The rigging of the wings is accomplished by adjusting the forks that join the lift struts to the fuselage.

The fin, rudder, stabilizers, and elevators are all constructed of tubular steel with steel channel ribs. Stainless steel tie rods and fittings brace the stabilizers to the fins and fuselage. The tail brace wires should not be used for lifting or handling the aircraft on the ground.

The fuselage, wings, empennage, and landing gear are covered with a polyester fiber treated with Cub Crafters'

SECTION 7 AIRCRAFT AND SYSTEMS

proprietary covering process, which provides an excellent, durable finish.

7.3 LANDING GEAR

The aircraft has a conventional, or tailwheel, landing gear configuration. The main gear legs are made from welded steel tubing. Bungee cords on cabane struts provide shock absorption. The main wheels carry 6.00 X 6 tires standard.

An optional Alpha Omega Suspension System can be installed in place of the bungee cord suspension. See Burl's Aircraft, LLC for manufacturer's information.

Each main wheel is provided with a set of disc brakes. The left and right systems are independent of each other. There are two valves that operate the parking brake located under the pilot's seat. The units form an integral part with the copilot's toe brakes. To operate the parking brake, press both brake pedals and rotate both valves 90 degrees (if the valve is vertical, the brakes are unlocked, if the valve is horizontal, the brakes are locked).

The tailwheel swivels through 360 degrees and is steerable via the rudder pedals. It is mounted to the fuselage with steel spring leafs.

7.4 FLIGHT CONTROLS

The aircraft has conventional controls, operated with a control stick, rudder pedals, and actuated with cables.

Pitch trim is accomplished via an electric servo which moves the leading edge of the horizontal stabilizer up and down, effectively changing the angle of incidence. The servo is actuated with a rocker switch located on the control stick.

Slotted flaps are actuated mechanically using a lever in the upper, left-hand side of the cockpit ahead of the pilot. The flaps have four positions: retracted, 15°, 35°, and 50°.

The flap lever has a spring latch system that will hold the flap in the selected position. To extend the flaps, depress the trigger on the flap handle and pull down and back on the flap handle. To retract the flaps, depress the trigger and move the handle up and forward.

The flight controls allow the aircraft to be flown solo from the front seat only or controlled from the rear seat when a pilot or properly trained student pilot is at the front seat controls. The front seat occupant must be able to properly use the controls in the front or be able to follow instructions from an instructor seated in the rear.

7.5 POWERPLANT

7.5.1 ENGINE

The aircraft is powered by a Teledyne-Continental O-200A engine. This is an air-cooled, four cylinder powerplant that is capable of delivering up to 100 hp at 2750 RPM.

A throttle controls power to the engine. Each occupant is provided with a throttle on the left side of the cockpit. The air-to-fuel mixture is adjusted manually with a control on the left side of the instrument panel. Pulling the mixture control all the way back operates a cut-off valve on the carburetor that stops the supply of fuel to the engine. The mixture control should always be used to stop the engine.

7.5.2 ENGINE MOUNT

The structure of the mount is made of high-strength steel and the engine is attached to the mount through rubber mounts that help reduce vibration.

7.5.3 PROPELLER

The standard aircraft comes with a Sensenich wood propeller or a wood core composite encased propeller. Optional propellers are also available.

7.5.4 ENGINE COWLING

The engine cowling is made of composite materials. The upper cowl can be removed using Philips-head fasteners. There is an oil access door located in the upper, righthand portion that allows easy access to the oil fill neck/dip stick, making removal of the cowl unnecessary during preflight inspections. Some aircraft are equipped with ground adjustable cowl flaps on the lower cowl. Remove the lower cowl from the aircraft to adjust the flaps as necessary, ensuring all attachment fasteners are retightened.

7.5.5 EXHAUST SYSTEM

The exhaust system is made of stainless steel. It is covered with a shroud that is used as a heat exchanger to draw hot air for the cabin and for the induction system.

7.5.6 IGNITION SYSTEM

Ignition is provided by Two independent magnetos. The pilot must ensure that both magnetos are operating correctly prior to takeoff. In an emergency, the engine will continue to run if one of the magnetos fails. The engine should be started with the ignition switch in the BOTH position.

7.5.7 AIR INDUCTION SYSTEM

The induction air for the engine enters through a filter on the lower side of the cowling. Alternatively, the pilot may use the carburetor heat control which operates a butterfly valve allowing heated, unfiltered air into the carburetor. The control is located on the instrument panel.

CAUTION

Ground operations with the carburetor heat control in the hot position must be limited because of the fact that air by-passes the filter.

Should the air filter become obstructed, the carburetor air control provides an alternate means of supplying the engine with air for the induction system.

SECTION 7 AIRCRAFT AND SYSTEMS

It is important that the pilot become knowledgeable about carburetor icing and the use of the carburetor heat. Cub Crafters recommends the following publication, available from the FAA website:

> Advisory Circular 20-113 - Pilot Precautions and Procedures to be taken in Preventing Aircraft Reciprocating Engine Induction System and Fuel System Icing Problems.

WARNING

AS CARBURETOR ICE ACCUMULATES, IT PRODUCES AN EXCESSIVELY RICH AIR/FUEL MIXTURE. THE ENGINE MAY START TO LOSE POWER OR STOP COMPLETELY. AT THIS POINT, THERE MAY NOT BE SUFFIECIENT HOT AIR IN THE ENGINE COMPARTMENT TO MELT THE ACCUMULATION OF CARBURETOR ICE, EVEN WHEN THE CARBURETOR HEAT CONTROL IS IN THE FULL "HOT" POSITION.

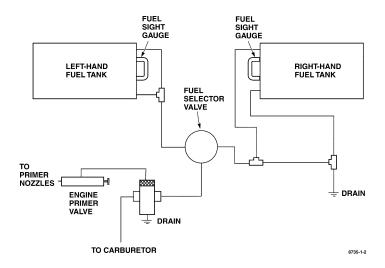
In general, follow these practices:

When icing conditions exist, apply carburetor heat often in all flight regimes. The main symptom of icing in the induction system will be loss of power.

Never use partial carburetor heat. Partial heat could make matters worse. Remember, full heat or nothing.

Be especially vigilant at lower power settings. It is good practice to use carburetor heat during any descent where you have reduced power, especially for landing.

In conditions conducive to icing or if ice was noted during engine run-up, perform another carburetor heat check immediately before takeoff. DO NOT leave carburetor heat on for the actual takeoff.


7.5.8 OIL SYSTEM

The oil system is an integral part of the engine, except for the cooler that is mounted on the lower, left-hand side of the firewall. The oil filler is on the right side of the engine.

An optional spin-on oil filter may be installed and is located on an adapter on the lower, left-hand side of the engine.

7.5.9 FUEL SYSTEM

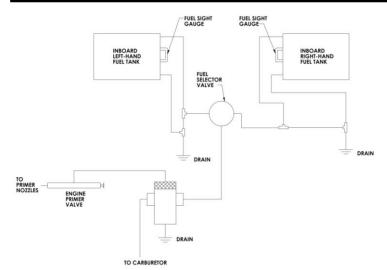

In the standard configured aircraft, fuel is carried in two tanks located on the inboard end of the wings. Each tank has a total capacity of 12.5 gallons for a total of 25 gallons. The total usable fuel is 24 gallons.

Figure 1 - Standard Fuel Tank Configuration

SECTION 7 AIRCRAFT AND SYSTEMS

CUB CRAFTERS CC11-100

Figure 2 - Standard Fuel Tank Configuration with Additional Fuel Drain (S/N 00264 and on)

In the extended range configuration, there are two interconnected tanks on the inboard end of each wing. Between the two tanks, they have a capacity of 22 gallons for a total of 44 gallons. The total usable fuel is 40 gallons.

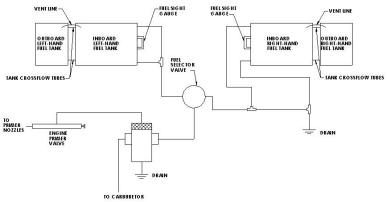
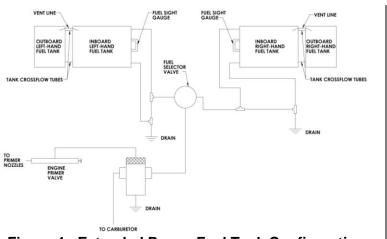



Figure 3 - Extended Range Fuel Tank Configuration

CUB CRAFTERS CC11-100

SECTION 7 AIRCRAFT AND SYSTEMS

Figure 4 - Extended Range Fuel Tank Configuration with Additional Fuel Drain (S/N 00264 and on)

The tanks are made of aluminum. There are two drains for the entire aircraft. One is located underneath the fuselage on the right side of the cockpit; the other is located on the left side, under the cowl and just forward of the firewall. These should be drained before each flight to test for water and sediment in the fuel system. The fuel system is gravity-fed with no separate boost pump.

The fuel flows from the tanks into a selector valve located on the lower, left side of the cockpit that has four positions:

- Both The engine is fed by both fuel tanks
- Left Fuel is supplied by the left tank.
- Right Fuel is supplied by the right tank.
- Off Fuel supply to the engine is cut off.

Fuel will flow from one tank to the other when the selector valve is in either the Off or the Both position. When parking the aircraft on a slope, leave the selector on either the left or right position to prevent cross-feeding and overflowing of the lower tank.

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 7-9 The engine may be operated on the Both, Left, or Right positions. However, the Both position is required for takeoff and landing.

Fuel quantity is determined by two sight-gauges located on either side of the cockpit at the wing root. The ventilation of the tanks is through the forward facing vented fuel caps.

Prior to refueling the aircraft, connect the fueling equipment's grounding wire to either of the wing tie downs or the exhaust pipes. This will ensure there is no electrical potential difference between the aircraft and the fueling equipment and will minimize the risk of electrical sparks when the aircraft is being refueled.

7.5.10 ELECTICAL SYSTEM

The main sources of electrical energy are a 12 volt battery and a 30 ampere alternator. The system has an over voltage relay and a voltage regulator. The battery is located underneath the front seat.

7.5.11 LIGHTS

Optional anti-collision light assemblies may be installed on each wingtip. These consist of a navigation light and a strobe. There may also be a position light on the rudder. An optional landing light may be mounted in either the leading edge of the left wing or in the leading edge of the left and right wings.

Optional LED lighting package may be installed on the aircraft. On the LED system, the NAV light must be turned on first in order for the strobes to operate.

7.5.12 STALL WARNING

The stall warning system is activated by a vane located on the leading edge of the left wing. As the aircraft approaches the stall, a horn will sound. The system is calibrated so that the horn will come on at least 6 mph or 5 knots above the stall speed.

7.5.13 PITOT-STATIC SYSTEM

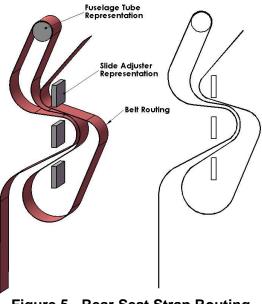
The pitot system senses dynamic pressure through a tube that is aligned with the flow of air and is located in the leading edge of the jury strut on the left wing.

The static pressure source for each instrument is vented to the inside of the cabin. Because of this, the indications for airspeed, altitude, and rate of climb will be affected by opening the windows, door, or cabin air vents.

7.6 COCKPIT

Entry to the cockpit is through a door and window arrangement on the right side of the aircraft. The window is latched to the door using rotating tangs that engage slots in the door. The door is opened using a rotating handle. The window must be raised until it engages the latch on the wing. Close the door by rotating the door handle and pulling it closed. Release the handle once the door is fully closed, allowing the latching pins to engage in the fuselage. Release the window latch on the wing and lower the window closed. Engage the tangs in the door.

A window on the left-hand side of the fuselage operates in a similar manner to that on the right.


Some aircraft are equipped with removable windows. Consult the Aircraft Maintenance Manual for instructions on removable and installation.

The aircraft seats two in a tandem configuration. All flight controls are within reach of the forward occupant, and therefore, the aircraft must be flown from this position. The aft occupant is provided with a control stick, rudder pedals, throttle and brakes for flight instruction.

The forward seat is adjustable fore and aft. To move the seat, remove the quick-release pins on the sides of the seat and slide to the desired position.

The rear seat straps should be checked for proper routing through the slide adjuster as shown below.

CAUTION Ensure that the seat is secure prior to takeoff.

CUB CRAFTERS CC11-100

SECTION 7 AIRCRAFT AND SYSTEMS

When the rear seat is not in use, it can be stowed in the Sling Seat Holder. See the Aircraft Maintenance Manual Section 5.4.15.

Disconnect the two cinched nylon straps holding the seat cross bar to the floor by unscrewing and pushing in on the screw. This will allow the tab to rotate and slide the pin out of the seat base connector. Lift the rear seat cross bar up and out of the retaining slots. See Figure 6 and Figure 7.

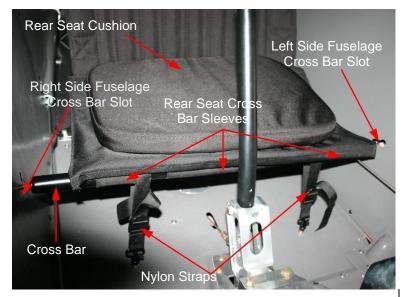


Figure 6 - Removal of Rear Seat Bar

Figure 7 - Disconnecting Nylon Straps

Issued: 08/01/06 Date of Revision: 04/09/13 REPORT SC10000AFM Page Number: 7-13

SECTION 7 AIRCRAFT AND SYSTEMS

Slide the cross bar out of the rear seat cross bar sleeves and the nylon straps. Remove the seat cushion from the rear seat. Fold the rear seat for stowage. See Figure 8.

Figure 8 - Folding of Rear Seat

Tuck the rear seat, seat cushion, and nylon cross bar straps (if seat cross bar not re-installed) in the Sling Seat Holder (also stores the Pilot's Operating Handbook) as shown in Figure 9.

CUB CRAFTERS CC11-100

SECTION 7 AIRCRAFT AND SYSTEMS

Figure 9 - Stowage in Sling Seat Holder

The seat cross bar can either be securely stowed in the aft baggage compartment or reinstalled in the fuselage cross bar slots. If the cross bar is reinstalled, the nylon straps must be reinstalled on the cross bar and reattached to the floorboard in order to securely hold the cross bar in place.

7.7 INSTRUMENT PANEL

The instrument panel contains all flight, navigation, and engine instruments that are required for VFR operations. See Manufacturer's instructions regarding operation of equipment installed in the instrument panel.

7.8 CABIN HEAT

Hot air for heating the cabin is supplied by a heat exchanger located around the engine exhaust. Hot air enters the cabin through opening in the floorboard. To select the heater, the control on the upper right part of the instrument panel must be pulled aft.

7.9 BAGGAGE AND CARGO COMPARTMENT

The standard aircraft has a cargo compartment located behind the rear occupant that is divided into two areas. The forward area has a capacity of 100 lbs and the upper aft area 20 lbs.

The extended baggage configured aircraft has a forward cargo compartment located behind the pilot that has a capacity of 100 lbs and an extended cargo compartment that has a capacity of 60 lbs

7.10 ELT OPERATION AND LOCATION

The aircraft is supplied with an ELT transmitter that meets TSO C91a. The ELT is mounted in a bracket directly underneath the pilot's seat and may be accessed through an opening on the forward side of the seat column.

7.11 MUSIC JACK

An optional Music Jack may be installed on the aircraft.

NOTE:

When any device is plugged into the music jack, this will disable all GPS auditory warnings. However, visual warnings will still be displayed on the GPS screen.

TABLE OF CONTENTS

SECTION 8

HANDLING AND SERVICING

Paragraph

Page

8 ⊢	IANDL	LING AND SERVICING	
8.1	INTR	ODUCTION	8-1
8.2	GRO	UND HANDLING	8-1
8	3.2.1	TOWING INSTRUCTIONS	8-1
8	3.2.2	TIE-DOWN INSTRUCTIONS	8-1
8.3	SER	VICING FUEL, OIL, AND OTHER FLUIDS	8-2
8	3.3.1	OIL	8-2
8	3.3.2	FUEL	8-2
8	3.3.3	BRAKE FLUID	8-3
8	3.3.4	AIR FILTER	8-3
8.4	CLE/	ANING AND CARE	8-3
8	8.4.1	EXTERIOR	8-3
8	8.4.2	INTERIOR	8-4

INTENTIONALLY LEFT BLANK

8 HANDLING AND SERVICING

8.1 INTRODUCTION

This section gives a description of the ground handling and basic servicing of the aircraft.

8.2 GROUND HANDLING

8.2.1 TOWING INSTRUCTIONS

The aircraft can be moved manually without the use of a tow bar. The forward lift struts and the leading edge of the horizontal or vertical stabilizer may also be used for moving the aircraft. Pushing or pulling on the propeller is not recommended.

8.2.2 TIE-DOWN INSTRUCTIONS

If possible, tie-down the aircraft pointed into the wind. The flaps should be fully retracted. If tie-downs are unavailable, the parking brake should be set. If tie-downs are available, tie-down both wings using the tie down rings on the outboard portion of the forward wing strut at the strut/wing interface. Tie down the tailwheel at the head of the tailwheel.

8.3 SERVICING FUEL, OIL, AND OTHER FLUIDS

8.3.1 OIL

Approved Oils:

Cold Weather: SAE 20W-50 or SAE 15W-50 Warm Weather: SAE 40 or SAE 50

Approved Oil Filter: K&N HP1008

Mineral oil is used during the first 50 hours for engine break-in. Ashless dispersant detergent oil (meeting Teledyne Continental Specification MHS-24) is recommended after break-in period.

The oil is checked by using the oil door on the upper right portion of the cowl. Determine oil level by reading the markings on the dipstick. Recommended quantity is 5 quarts.

With the spin-on oil filter option, the maximum oil change interval is every 50 hours. Otherwise, the oil should be changed every 25 hours. In adverse conditions, more frequent oil changes are recommended.

8.3.2 FUEL

Approved Fuel Grades:

100 Aviation Fuel (green tint) 100LL Aviation Fuel (blue tint)

The fuel caps on each tank have a forward facing vented cap. Prior to fueling, attach a ground cable and remove fuel caps. Monitor the amount of fuel added by visually watching the amount of fuel rise inside the tank. Sump drains as described in the preflight actions under the **NORMAL PROCEDURES** section. Secure fuel caps on both tanks with vent tube facing forward.

REPORT SC10000AFM Page number: 8-2 Issued: 11/26/08 Date of revision: 10/31/11

8.3.3 BRAKE FLUID

Approved Fluid: Brake Fluid per MIL-H-5606G (Aeroshell #41)

Visually inspect fluid levels. If brake fluid is required, fill with an approved fluid approximately 2/3 full to leave space for the reservoir cap when it is installed.

8.3.4 AIR FILTER

Approved Air Filter:

```
Cub Crafters Part Number SC54108-001
```

Visually inspect air filter. Depending on the operating conditions, filter life will vary. Monitor filter and obtain replacement from Cub Crafters when required.

8.4 CLEANING AND CARE

8.4.1 EXTERIOR

Use mild automotive soap for washing the exterior of the aircraft.

The windows and windshield can be cleaned using Zep Foaming Glass Cleaner.

8.4.2 INTERIOR

A damp rag is typically adequate for cleaning the interior of the aircraft.

The windows and windshield can be cleaned using Zep Foaming Glass Cleaner.

TABLE OF CONTENTS

SECTION 9

SUPPLEMENTS

9.0	GENERAL	
9.1	STRAIGHT AND AMPHIBIOUS FLOATS	. 9-1-1
9.2	SINGLE PLACE CONVERSION	. 9-2-1
9.3	CONVERSION TABLES	. 9-3-1
9.4	FORMS	. 9-4-1
9.5	TWO-SWITCH ELEVATOR TRIM SYSTEM.	. 9-5-1

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number 9-0-ii

Issued: 10/31/11 Date of Revision: 03/13/12

9.0 GENERAL

This section provides information that amends certain limitations, procedures and data which are applicable to airplanes equipped with one or more of the optional systems. These systems are not part of the standard package. In addition, this section contains forms for the owner/operator to report service difficulties and change of address/ownership.

This section has a log of approved supplements. It should be used to ensure that all pertinent supplements have been included in the Pilot's Operating Handbook. Each supplement contains its own Log of Effective Pages.

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number 9-0-iv

Issued: 10/31/11 Date of Revision: 03/13/12

l

9.1 STRAIGHT AND AMPHIBIOUS FLOATS

LOG OF REVISIONS

Current revisions to the Pilot's Operating Handbook and Flight Training Supplement Section 9.1.

Rev	Pages	Description of Revision
NC	ALL	Initial Release
Α	ALL	Added 1500A (Amphibious) information
В	9-1-1 9-1-22 9-1-23	Added Log of Revisions Revised Section 9.1.7.4. Added Table 9-1-4
С	ALL	Updated to new format.
D	9-1-13	Added step for additional fuel drain

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 9-1-2

Issued: 04/15/09 Date of Revision: 04/09/13

9.1.1 GENERAL

This supplement must be attached to the Pilot's Operating Handbook when floats are installed per the Equipment List supplied with the aircraft and listed in Section 6 of this manual. The information contained herein supplements or supersedes the Pilot's Operating Handbook only in the areas listed in this supplement. For limitations, procedures and performance information not contained in this supplement, consult Section 2 of this Pilot's Operating Handbook.

9.1.2 FUEL QUANTITY INDICATORS

To determine the fuel quantity when equipped with floats, use the fuel quantity indication for level flight. Fuel indications in the water will vary depending on the angle at which the aircraft is floating. Generally, using the markings for level flight will ensure that the amount of fuel available is greater than what is shown on the gauges.

9.1.3 BILGE PUMP

There is a bilge pump stowed in a float locker. Any water that has accumulated in the floats may be emptied out by removing the rubber plugs and using the pump to draw the water out. Make sure that no one is standing in the way of the water stream.

APPROVED FLOAT MODELS:

- Baumann BF1500 (Straight)
- Baumann BF1500A (Amphibious)

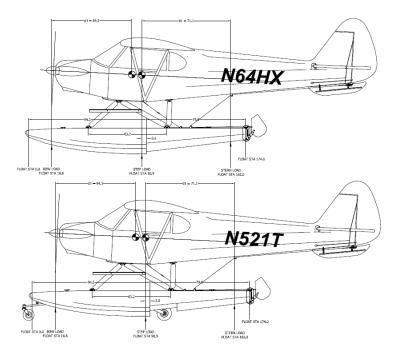


Figure 9-1-1 View of the Aircraft with Floats

9.1.4 LIMITATIONS

9.1.4.1 GENERAL

This section provides the operating limitations, instrument markings, color-coding and basic placards for operation that are specific to the Cub Crafters' CC11-100 when equipped with floats.

Please refer to Section 2 of this manual for the complete list of operating limitations, instrument markings, colorcoding and basic placards for operation that are common to the landplane and seaplane.

The ventral fin should not be used to push, pull, or tie down the aircraft.

REPORT SC10000AFM	Issued: 04/15/09
Page Number: 9-1-4	Date of Revision: 04/09/13

9.1.4.2 AIRSPEED LIMITATIONS

INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>	
Never exceed speed (V _{NE})	141	123	
Operating maneuvering speed (V _A) (at 1430 lb)	97	84	
Maximum Flap Speed (V _{FE} flaps 50°)	81	70	
Best Rate of Climb Speed (V _Y) (at 1430 lb)	71	62	
Best Angle of Climb Speed (V _x) (at 1430 lb)	50	43	
Maximum Demonstrated Crosswind Velocity11 kts			

9.1.4.3 CENTER OF GRAVITY

Forward	(at 1430 lb.)	73.0 in. aft of Datum
	(at 1100 lb. or less)	70.5 in. aft of Datum

Straight line variation between points given Rearward (at all weights)78.5 in. aft of Datum

The datum is 60 in. forward of wing leading edge.

9.1.4.4 PLACARDS

Locate near water rudder retraction handle stowage hook:

WATER RUDDER ALWAYS UP EXCEPT FOR WATER TAXIING

Next to the water rudder retraction handle:

WATER RUDDER

On the landing gear handle (Amphibious Only):

LANDING GEAR

Near Fuel Selector Valve on the left interior panel (Amphibious Only):

GEAR UP

GEAR DN

REPORT SC10000AFM Page Number: 9-1-6

9.1.5 EMERGENCY PROCEDURES

9.1.5.1 GENERAL

This section provides the procedures Cub Crafters recommends should be followed when encountering an emergency or a critical situation as related specifically to operations when the floats are installed. For all other emergency procedures, refer to Section 3 of this manual.

This section is divided into two parts. The first contains emergency procedure checklists. The second part amplifies the items listed in the checklists and includes information that is not readily adaptable to a checklist format or which the pilot could not be expected to refer to in an emergency situation. This information should be reviewed regularly.

Pilots must familiarize themselves with the procedures in this section and must be prepared to take appropriate action should an emergency arise.

It is stressed that the procedures outlined in this section are recommendations only. They are not a substitute for sound judgment and common sense and may have to be adjusted depending on the circumstances prevailing at the time of the emergency. It is important that the pilot be thoroughly familiar with the aircraft. He/She must review and practice as many of these procedures as are safe to perform as part of his/her training. Above all, in any emergency situation, MAINTAIN CONTROL OF THE AIRCRAFT.

9.1.5.2 AIRSPEEDS FOR EMERGENCY OPERATIONS

STALL SPEEDS (1430 lb)

INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>
Flaps up (V _{S1})	40	35
Flaps down (50°) (V _{s0})	32	28
BEST GLIDE (V _G) Flaps up (1430 lb)	68	59

9.1.5.3 EMERGENCY CHECKLIST

9.1.5.3.1	Emergency	Landing	on	Water	without
	Engine Powe	er			

	INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>
•	Approach (flaps up)V _G	68	59
	Seat Belts	Tight and	secure

When landing area assured:

•	Flaps	As required
•	Gear (Amphibious Only)	Up
	Door	
•	ELT	Activate
•	Touchdown	Slightly tail low
	Control Stick	

When aircraft comes to a stop:

•	Magnetos/Ignition	Off
	Master Switch	
•	Fuel Selector	Off

If time permits, check GPS or charts for airports in the immediate vicinity. If possible, notify your difficulty and intentions by radio on 121.50 and/or squawk 7700.

9.1.5.3.2 Emergency Landing on Land without Engine Power

INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>
 Approach (flaps up) V_G 	68	59
Seat Belts	Tight and	secure
 Flaps Gear (Amphibious Only) 		
 Door 		
• ELT		Activate
 Touchdown 	Level	attitude
Control Stick	Hole	d full aft

When aircraft comes to a stop:

	Magnetos/Ignition	Off
	Master Switch	Off
-	Fuel Selector	Off

If time permits, check GPS or charts for suitable landing areas in the immediate vicinity. If possible, notify your difficulty and intentions by radio on 121.50 and/or squawk 7700.

9.1.5.3.3 Landing Gear Fails to Retract or Extend

If possible, cycle the gear to address the problem. If the problem is unable to be corrected, with the gear in the Up position, attempt a normal water landing. With the gear in the Down position, the pilot should attempt a normal landing on wheels. If the gear is Up and water is unavailable, the pilot will have to use his/her best judgment.

9.1.5.4 AMPLIFIED EMERGENCY PROCEDURES

9.1.5.4.1 Total Loss of Engine Power in Flight

The aircraft with floats will glide 1.1 nautical miles for every 1000 feet of altitude loss. The rate of descent will be approximately 890 feet per minute. Most GPS devices have a "Direct to" function that shows the closest airports. Use charts to assess the topography of airports in the immediate vicinity.

9.1.5.4.2 Emergency Landing on Land without Engine Power

When having to make an emergency landing on land while equipped with straight floats, the pilot should use his/her best judgment to find the most suitable surface for landing.

WARNING DO NOT ATTEMPT TO LAND ON WATER UNLESS ALL FOUR WHEELS ARE IN THE RETRACTED POSITION.

9.1.6 NORMAL PROCEDURES

9.1.6.1 INTRODUCTION

This section describes the procedures Cub Crafters recommends for the pilot to follow during normal operations of the aircraft on floats. It is divided into two parts. The first has abbreviated checklists; these are in a format suitable for reference in the cockpit. The second part amplifies the information given in the checklists. It provides the pilot with detailed descriptions that will help him/her understand the procedures and techniques. This section contains complete checklists so that the pilot can carry out these activities out without having to turn back and forth in this manual.

9.1.6.2 AIRSPEEDS FOR NORMAL OPERATIONS

The speeds in this section are based on a maximum weight of 1430 lb, under standard conditions, at sea level.

9.1.6.3 MAXIMUM WAVE HEIGHT

9.1.6.4 NORMAL PROCEDURES CHECKLIST

For ease of operation, this supplement will provide the complete checklist.

9.1.6.4.1 Cockpit Preflight

 Flight Controls F Trim Check ope Fuel Selector Flaps Fuel Gauges Sufficient (use level flight indicated (use level flight (use le	eration and set for takeoff Both Proper operation ent fuel for intended flight ations for float operation) Idle cut-off Cold Off Only)Up for Water
	ensure handle is stowed) (Down for Water)
 Master Switch Navigation/Strobe Lights Landing Light Stall Warning Horn Master Switch Circuit Breakers Windows Documentation 	Check operation Check operation Check operation Off Check in Check in

If passenger seat unoccupied

•	Passenger	Seat Harness	Secure
---	-----------	--------------	--------

9.1.6.4.2 Preflight Right Fuselage, Wing, and Float

•	Right FuselageCheck
•	Fuel Sump Drain
•	Flap SurfaceCheck condition
•	Flap HingesCheck
•	Aileron SurfaceCheck condition
•	Aileron HingesCheck
•	Wing Tip and LightCheck
•	Vortex GeneratorsCheck
•	Fuel Cap VentCheck
•	Fuel TankCheck supply and cap for security
•	Water Rudder and CablesCheck,
	extend- retract
•	Main and Nose Gear (Amphibious Only) Check
•	Float Check for damage and water accumulation
	(use bilge pump as necessary)

NOTE

Remove rubber plugs which serve as stoppers on the standpipe in each float compartment and pump out any accumulation of water. Reinstall rubber plugs with enough pressure for a snug fit.

- Bilge Rubber PlugsSecure
- Oar Check stowed and secure
- Float Hatches Cargo secure and hatches latched

9.1.6.4.3 Preflight Nose Section

	Oil DoorOper	۱
	Oil QuantityCheck and cap secure	
•	Engine ConditionCheck	(
•	Oil DoorClose	÷
•	Propeller and SpinnerCheck	(
•	Air InletsCheck	(
•	Fuel Strainer (in front of firewall on left) Drain	۱
•	Fuel Drain (behind firewall on left)Drain?	t
*For aircraft S/N 00264 and on only		

9.1.6.4.4 Preflight Left Fuselage, Wing, and Float

- Float HatchesCargo secure and hatches latched
- Main and Nose Gear (Amphibious Only)...... Check
- FloatCheck for damage and water accumulation (use bilge pump as necessary)

NOTE

Remove rubber plugs which serve as stoppers on the standpipe in each float compartment and pump out any accumulation of water. Reinstall rubber plugs with enough pressure for a snug fit.

•	Bilge Rubber Plugs	Secure
•	Fuel TankCheck sup	oply and cap for security
•	Fuel Cap Vent	Check
•	Landing Light	Check condition
•	Pitot Tube	Check condition
•	Stall Warning Vane	Check condition
•	Wing Tip and Light	Check condition
•	Vortex Generators	Check
•	Aileron Hinges	Check
•	Aileron Surface	Check condition
•	Flap Hinges	Check
•	Flap Surface	Check condition
•	Water Rudder and Cables	Check
•	Left Fuselage	Check

9.1.6.4.5 Empennage

•	Bracing Wires	Check for tension
•	Hinges	Check
•	Surfaces	Check
•	Ventral Fin	Check

9.1.6.4.6 Preflight General

Check that all wings and other external surfaces are free from frost, ice or snow.

9.1.6.4.7 Startup and Taxi

•	Preflight Inspection	Complete
-	Pilot Seat	Adjusted
-	Seat Belts	Fastened
-	Passenger Briefing	Complete
-	Door	Closed
-	Fuel Selector	Both
-	Avionics Master Switch	Off
-	Water Rudders	. Down for water
-	Landing Gear (Amphibious Only)	Up for Water
		Down for Land
•	Propeller Area	Clear

9.1.6.4.8 Starting Engine

•	Battery Master SwitchOr	n
	StrobesOr	
•	Magneto/Ignition SwitchesBoth or	n
•	Mixture Full rich	า
•	PrimerApply (3 times if cold, omit if hot)
•	ThrottleOpen 1/2 inch	'n
•	StarterEngage	Э

After engine has started:

•	Oil Pressure	Check
•	Throttle	Set 1000 RPM

Issued: 04/15/09	REPORT SC10000AFM
Date of Revision: 04/09/13	Page Number: 9-1-15

SECTION 9.1 SUPPLEMENT-FLOATS

•	Lights As required
•	Avionics Master SwitchOn

9.1.6.4.9 Starting Engine When Flooded

•	Magneto/Ignition Switches	Both on
•	Mixture	Idle cut-off
•	Throttle	Full open
•	Starter	Engage

When engine fires:

-	Mixture	Rich
	Throttle	
•	Oil Pressure	Check
•	Lights	As required
	Avionics Master Switch	

9.1.6.4.10 Warm up

•	Throttle	1000 to	1200	RPM
---	----------	---------	------	-----

9.1.6.4.11 Taxiing

•	Taxi Area	Clear
•	Throttle	Apply slowly

9.1.6.4.12 Before Takeoff

•	Flight Instruments	Check
•	Magnetos/Ignition	Both
•		Off (cold)
•	Trim	Set
•	Landing Gear (Amphibio	us Only)Up for Land
		Down for Land
•	Flaps	First notch (15°)
•	ControlsF	Free and proper movement
•	Doors	Closed
•	Strobes and Lights	As required
•	Seat Belts	Check fastened
•	Throttle	1700 RPM*

NOTE:

Drop not to exceed 150 RPM or 75 RPM differential between magnetos and no engine roughness. For electronic ignition, little or no drop will be noted.

- Carburetor Heat.... Hot, note RPM drop and remove
- Primer.....Locked
- Engine Instruments.....Check
 * Lean at high altitudes for peak RPM.

9.1.6.4.13 Takeoff

•	Water Rudders Check Up
•	Landing Gear (Amphibious Only) Up for Water
	Down for Land
•	Control StickFull Aft
•	ThrottleFull
•	Control Stick Move forward
	On water, when the nose stops rising to attain the planing attitude (on the step).
•	Accelerate to 40 mph or 35 knots (depending on aircraft weight)

- Control Stick...... Gentle back pressure
- Landing Gear (Amphibious Only) Up for Water Down for Land
- Flaps Retract slowly after liftoff

9.1.6.4.14 Climb

	INDICATED AIRSPEED (IAS)	<u>MPH</u>	<u>KNOTS</u>
•	Best Rate	71	62
•	Best Angle	50	43
	Mixture		Rich

As required, LEAN to obtain maximum RPM:

Carburetor HeatAs required

Issued: 04/15/09	REPORT SC10000AFM
Date of Revision: 04/09/13	Page Number: 9-1-17

9.1.6.4.15 Cruise

•	Power	Adjust
•	Mixture	Adjust
•	Carburetor Heat	Cold, use as required

9.1.6.4.16 Descent

•	Power	Adjust
	Mixture	
•	Carburetor Heat	As required

9.1.6.4.17 Approach

•	Fuel Selector		Both
•	Seat Belts	Fa	astened
•	Mixture		Set
•	Flaps		Set
	INDICATED AIRSPEED (IAS)	MPH	<u>KNOTS</u>
	Maximum speed first notch flaps (15°)	85	74
	Maximum speed (>15°)	81	70
•	Trim	As r	equired
•	Speed	As r	equired
	(1.3 full flaps stall speed at gross weig 37 knots IAS)	ht is 42	mph or

9.1.6.4.18 Landing

•	Water Rudders	Check up
•	Landing Gear (Amphibious Only)	Up for Water
		Down for Land
•	Control Stick H	Hold full aft as aircraft
	decel	erates to taxi speed
		oratoo to taxa opood

WARNING

IF WHEELS ARE IN DOWN POSITION FOR A WATER LANDING (AMPHIBIOUS ONLY), THE AIRCRAFT WILL FLIP OVER. FOR ALL WATER LANDING, ENSURE WHEELS ARE UP (AMPHIBIOUS ONLY).

9.1.6.4.19 Cross Wind Landing

•	Fuel Selector	Fa	stened
•	Mixture Flaps Set INDICATED AIRSPEED (IAS)	below w	hite arc
	Maximum speed first notch flaps (15°)	85	74
	Maximum speed (>15°)	81	
•	Trim	As re	equired
•	Speed		
(A	higher speed than normal is recommend	ed)	
•	Water Rudders	Cł	neck up
•	Landing Gear (Amphibious Only)		
		Down fo	
•	Ailerons-Rudder	On sh	ort final
Us	e ailerons to keep upwind wing low		
Rι	udder to hold landing area alignment		
•	Touchdown Do not touc		
•	Landing Roll Use ailerons	to keep	upwind
	wing down, rudder to keep directional c	ontrol as	
	appropriate, water rudders down (water	only)	
9.′	1.6.4.20 Go-Around		
•	Throttle Airspeed	. Above \$	

9.1.6.4.21 Stopping Engine

tract
Off
Off
.Idle
ut off
Off
Off

9.1.7 WEIGHT AND BALANCE

9.1.7.1 INTRODUCTION

This section provides the position of the center of gravity relative to the datum. It also describes how to calculate the empty weight of the aircraft based on data for the landplane. Should it be necessary to weigh the aircraft on floats, please consult the maintenance manual.

9.1.7.2 PERTINENT INFORMATION FOR WEIGHT AND BALANCE OF THE CC11-100 AIRCRAFT EQUIPPED WITH FLOATS

Position of Datum	60 inches ahead of wing leading edge
Maximum Gross Weight	1430 lb.
Center of Gravity Limits at 1430 lb. Forward Aft	
Center of Gravity Limits at 1100 lb. c Forward Aft	70.5 in. aft of datum

9.1.7.3 DETERMINATION OF EMPTY WEIGHT

The empty weight and the position of the center of gravity are recorded in Section 6 of this manual.

The weight and moments of the floats are given in Table 9-1-1 and 9-1-2. If there is any difficulty or concern in values listed, performing an actual weight and balance is recommended.

Item	Weight Ib.	Arm in.
Straight floats with attachment gear, oar, and bilge pumps	195 (approx)	81.5
Rudder Bar and Springs	1.75	253
Ventral Fin	5.0	246
Total: Empty with Straight Floats		

Table 9-1-1 - Weight of Straight Floats

Item	Weight lb.	Arm in.
Amphibious floats with attachment gear, oar, and bilge pumps	239 (approx)	75.5
Gear retraction handle and brackets	2.75	65
Rudder Bar and Springs	1.75	253
Ventral Fin	5.0	246
Total: Empty with Amphibious Floats		

Table 9-1-2 - Weight of Amphibious Floats

9.1.7.4 WEIGHT AND BALANCE DETERMINATION FOR FLIGHT

In order to calculate the weight and balance of the aircraft:

- 1. Insert the respective loads in Table 9-1-3 or Table 9-1-4.
- 2. Multiply each load by its respective arm and note the moment.
- 3. Add the loads to calculate the takeoff weight.
- 4. Add the moments to compute the total moment.
- 5. Divide the moment by the takeoff weight. This is the final position of the center of gravity.
- 6. Plot the point on Figure 9-1-2. If it is within the weight and balance envelope, the aircraft is within the approved envelope.

	Weight (lb.)	Arm (in.)	Moment (lb-in)
Basic empty weight			
Float hatches (standard)		64.00	
Float hatches (optional)		43.75	
Pilot		71.40	
Passenger		96.08	
Fuel		83.90	
Forward cargo compartment (100 lb max)		110.40	
Cargo shelf compartment (20 lb max)		134.40	
Takeoff weight			

Table 9-1-3 – Weight and Balance Loading Form with Floats

	Weight (lb.)	Arm (in.)	Moment (lb-in)
Basic empty weight			
Float hatches (standard)		64.00	
Float hatches (optional)		43.75	
Pilot		71.40	
Fuel		83.90	
Forward cargo compartment (100 lb max)		110.40	
Extended cargo compartment (60 lb max)		138.40	
Takeoff weight			

Table 9-1-4 –Weight and Balance Loading Form with Floats Extended Cargo Compartment

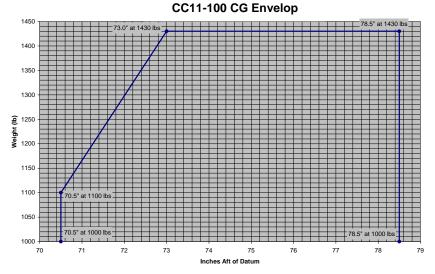


Figure 9-1-2 - Weight and Balance Envelope with Floats

9.1.8 PERFORMANCE

All values listed are at gross weight under standard sea level conditions. The following data is applicable only to the CC11-100.

9.1.8.1 CLIMB

Pressure	1/	AS	Rate of
Altitude (ft)	MPH	Knots	Climb
1,000	70	61	1426
2,000	70	61	1359
3,000	70	61	1292
4,000	71	62	1225
5,000	71	62	1158
6,000	71	62	1091
7,000	71	62	1024
8,000	72	63	957
9,000	72	63	890
10,000	72	63	823
11,000	72	63	756
12,000	73	63	689

9.1.8.2 Takeoff/Landing-Wheels

Wheel		Distance
Takeoff	Roll	240
	50' Obstacle	731
Land	Roll	739
	50' Obstacle	1443

9.1.8.3 Takeoff/Landing-Water

Water	Condition	Distance
Takeoff	Roll	340
	50' Obstacle	551
Land	Roll	749
	50' Obstacle	1227

9.2 SINGLE PLACE CONVERSION

LOG OF REVISIONS

Current revisions to the Pilot's Operating Manual and Flight Manual Section 9.2.

Rev	Pages	Description of Revision
NC	ALL	Initial Release
A	9-2-1 9-2-6	Added Log of Revisions Added Table 9-2-3
В	ALL	Updated to new format.

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 9-2-2

Issued: 04/15/09 Date of Revision: 10/31/11

9.2.1 GENERAL

This supplement describes the process and requirements for converting a two place aircraft to a single place aircraft and provides authorization to perform this conversion. In accordance with ASTM and FAA regulations, a two place 80hp S-LSA must weigh less than 902 pounds empty. The empty weight of 1090 pounds (1200 on floats with CC340) applies when the converted to single place only aircraft has been operation. The aircraft may be converted back and forth from single place to a two place configuration as described in this supplement, as long as it meets the empty weight requirements for that configuration per Section 9.2.2.2. This may be useful for owners/operators to install special equipment such as large tires, skis, etc but would put them overweight for two place operation. This supplement allows that aircraft to be converted to single place. This supplement supersedes the Pilot's Operating Handbook and is required for single place operation. conversion is considered This an owner/operator task.

9.2.2 LIMITATIONS

9.2.2.1 GENERAL

The conversion requires the following items: For Single Place Operation:

- Rear seat must be removed or stowed
- Rear control stick must be removed
- Rear control stick cover must be installed
- Single Seat Placard must be installed
- Maximum empty weight per Section 9.2.2.2.

For Two Place Operation:

- Rear seat must be installed.
- Single Seat Placard must be removed
- Maximum empty weight per Section 9.2.2.2.

9.2.2.2 EMPTY WEIGHT INFORMATION

The maximum empty weights as defined by ASTM and FAA regulations are as shown in the table below. The aircraft must always comply with the weights shown below.

	Max Empty Weight (CC340 Engine)	Configuration
Wheels/Skis	900 lbs	Two Place
Wheels/Skis	1090 lbs	Single Place
Floats	1010 lbs	Two Place
Floats	1200 lbs	Single Place

Table 9-2-1 - Maximum Empty Weights

9.2.2.3 PLACARDS

This placard is designed to be fixed using "Velcro" and must be present when equipped for single place operation. This placard must be removed for dual place operation. The placard may be installed on the instrument panel or on the overhead tube near the compass correction card.

Figure 9.2.1 - Single Seat Placard

REPORT SC10000AFM Page Number: 9-2-4

9.2.3 CONVERSION PROCEDURES

9.2.3.1 FROM TWO PLACE TO SINGLE PLACE

Remove or stow the rear seat. See Section 9.2.3.4.. Remove the rear stick and install the rear stick stub cover. Install placard on the instrument panel, overhead tube near the compass correction card, or in another conspicuous place. The maximum empty weight in this configuration is shown in Section 9.2.2.2.

9.2.3.2 FROM SINGLE PLACE TO TWO PLACE

Install rear seat. Remove the rear stick stub cover and install rear stick (if desired). Remove the placard governing single place operation only. The aircraft maximum empty weight configuration is shown in Section 9.2.2.2.

9.2.3.3 DETERMINATION OF LOADING CHANGE

Use the table below to determine the weight and balance changes for converting a two place to a single place aircraft. Use the information in reverse when the aircraft is returned to service in a two place configuration. Use only the applicable information (stowing vs. removing seat).

Item	Weight (lb)	Arm (in)	Moment (in-lbs)
Rear Seat Removal (includes seat cross bar)	-6.15	96.08	-590.89
Rear Control Stick Removal	20	84.08	-16.82
Rear Control Stick Cover	.69	84.08	58.02

Table 9-2-2 - Weight & Balance Changes

Use the table below to determine the weight and loading for a single seat aircraft. Note that in the example below, the rear seat is shown as completely removed. If the seat is stowed and not removed, remove this from your calculations. If any changes are made for main gear or tailwheel, the main gear arm is 62.5 inches and the tailwheel arm is 261.9 inches.


Item	Weight (lbs)	Moment Arm (in)	Moment (in·lbs)
Aircraft Empty			
Fuel		83.90	
Pilot		71.40	
Passenger Seat Removal	-6.15	96.08	-590.9
Rear Stick Removal	-0.20	84.08	-16.8
Rear Stick Stub Cover	0.69	84.08	58.0
Forward Cargo Compartment (100 lb max)		110.40	
Cargo Shelf Compartment (20 lb max)		134.40	
TOTAL			
CG Station:			

Table 9-2-3 - Weight & Balance Loading Form

CUB CRAFTERSSECTION 9.2CC11-100SUPPLEMENT- SINGLE PLACE CONVERSION

9.2.3.4 INSTALLATION OF REAR STICK COVER

1. Loosen and remove the AN3 bolt, washers, and AN365 lock nut holding the rear stick into the rear stick stub.

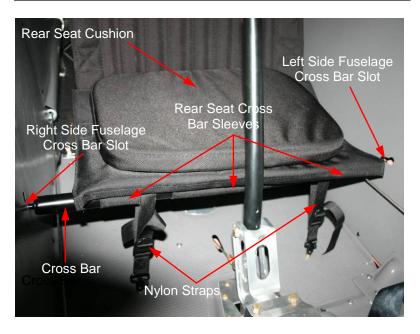
2. For first time installation, remove floor fasteners and install the rear stick cover over the stick stub and match drill to the existing fasteners on the floorboard.

3. Fasten the stick cover to the floorboard using existing hardware from the last step.

Issued: 04/15/09 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 9-2-7

SECTION 9.2 CUB CRAFTERS SUPPLEMENT- SINGLE PLACE CONVERSION CC11-100

- 4. Move the front control stick through the full range of motion (including trim) and ensure there is no contact between the rear stick stub and the stick cover.
- 5. Adjust weight and balance information accordingly.
- 6. For reinstallation, remove the stick cover, install the fasteners back into the floorboard. Install the rear stick and torque the fastener to 43-48 in-lbs. Ensure full range of motion (including trim) is met without the rear stick contracting anything. Adjust weight and balance information accordingly.


9.2.3.5 REAR SEAT REMOVAL OR STOWAGE

 Disconnect the two cinched nylon straps holding the seat cross bar to the floor by unscrewing and pushing in on the screw. This will allow the tab to rotate and slide the pin out of the seat base connector.

2. Lift the rear seat cross bar up and out of the retaining slots.

CUB CRAFTERS SECTION 9.2 CC11-100 SUPPLEMENT- SINGLE PLACE CONVERSION

 Slide the cross bar out of the rear seat cross bar sleeves and the nylon straps. Remove the seat cushion from the rear seat. Fold the rear seat for stowage above the Sling Seat Holder (also stores the Pilot's Operating Handbook).

Issued: 04/15/09 Date of Revision: 10/31/11 REPORT SC10000AFM Page Number: 9-2-9

SECTION 9.2 CUB CRAFTERS SUPPLEMENT- SINGLE PLACE CONVERSION CC11-100

- 4. The seat cross bar can either be securely stowed in the aft baggage compartment or reinstalled in the fuselage cross bar slots. If the cross bar is reinstalled, the nylon straps must be reinstalled on the cross bar and attached to the floorboard in order to securely hold the seat cross bar in place.
- 5. Tuck the seat cushion and, if cross bar not reinstalled, nylon cross bar nylon straps in the sling seat holder.
- 6. If the seat is completely removed from the aircraft, loosen the two straps at the top of the seat and remove the seat, and rear seat cross tube. If removed, note that the 6.15 lbs includes the entire seat and cross bar.
- 7. Adjust weight and balance information accordingly if the seat is removed.
- 8. Reinstallation involves dropping the seat down out of the storage area (or installing the top straps if the seat was removed) and inserting the rear seat cross tube and hold down straps, then fastening the hold down straps back to the floor.

9.2.3.6 REAR SEAT HARNESSES / RESTRAINTS

1. If the aircraft will be operated without a rear seat, stow the lap and shoulder harnesses such that it cannot interfere with safe operation of the aircraft.

9.3 CONVERSION TABLES

LOG OF REVISIONS

Current revisions to the Pilot's Operating Manual and Flight Manual Section 9.3.

Rev	Pages	Description of Revision				
NC	ALL	Initial Release				

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 9-3-2

CUB CRAFTERS CC11-100

SECTION 9.3 SUPPLEMENT- CONVERSION TABLES

9.3.1 WEIGHT

POUNDS INTO KILOGRAMS LIVRES EN KILOGRAMMES

LB	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	kg									
0		0.454	0.907	1.361	1.814	2.268	2.722	3.175	3.629	4.082
10	4.536	4.990	5.443	5.897	6.350	6.804	7.257	7.711	8.165	8.618
20	9.072	9.525	9.979	10.433	10.886	11.340	11.793	12.247	12.701	13.154
30	13.608	14.061	14.515	14.969	15.422	15.876	16.329	16.783	17.237	17.690
40	18.144	18.597	19.051	19.504	19.958	20.412	20.865	21.319	21.772	22.226
50	22.680	23.133	23.587	24.040	24.494	24.948	25.401	25.855	26.303	26.762
60	27.216	27.669	28.123	28.576	29.030	29.484	29.937	30.391	30.844	31.298
70	31.752	32.205	32.659	33.112	33.566	34.019	34.473	34.927	35.380	35.834
80	36.287	36.741	37.195	37.648	38.102	38.555	39.009	39.463	39.916	40.370
90	40.823	41.277	41.731	42.184	42.638	43.091	43.545	43.999	44.452	44.906
100	45.359	45.813	46.266	46.720	47.174	47.627	48.081	48.534	48.988	49.442

9.3.2 LENGTH

FEET INTO METERS PIEDS EN METRES

Ft	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	Meters									
0		0.305	0.610	0.914	1.219	1.524	1.829	2.134	2.438	2.743
10	3.048	3.353	3.658	3.962	4.267	4.572	4.877	5.182	5.486	5.791
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	8.534	8.839
30	9.144	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	11.887
40	12.192	12.497	12.802	13.106	13.411	13.716	14.021	14.326	14.630	14.935
50	15.240	15 545	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.983
60	18.288	18.593	18.898	19.202	19.507	19.812	20.117	20.422	20.726	21.031
70	21.336	21.641	21.946	22.250	22.555	22.860	23.165	23.470	23.774	24.079
80	24.384	24.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.127
90	27.432	27.737	28.042	28.346	28.651	28.956	29.261	29.566	29.870	30.175
100	30.480	30.785	31.090	31.394	31.699	32.004	32.309	32.614	32.918	33.223

IN	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	CM	CM	CM	СМ	CM	CM	CM	CM	СМ	CM
0		2.5	5.1	7.6	10.2	12.7	15.2	17.8	20.3	22.9
10	25.4	27.9	30.5	33.0	35.6	38.1	40.6	43.2	45.7	48.3
20	50.8	53.3	55.9	58.4	61.0	63.5	66.0	68.6	71.1	73.7
30	76.2	78.7	81.8	83.8	86.4	88.9	91.4	94.0	96.5	99.1
40	101.6	104.1	106.9	109.2	111.8	114.3	116.8	119.4	121.9	124.5
50	127.0	129.5	132.1	134.6	137.2	139.7	142.2	144.8	147.3	149.9
60	152.4	154.9	157.5	160.0	162. 6	165.1	167.6	170.2	172.7	175.3
70	177.8	180.3	182.9	185.4	188.1	190.5	193.0	195.6	198.1	200.7
80	203.2	205.7	208.3	210.8	213.4	215.9	218.4	221.0	223.5	226.1
90	228.6	231.1	233.9	236.2	238.8	241.3	243.8	246.4	248.9	251.5
100	254.0	256.5	259.1	261.6	264.2	266.7	269.2	271.8	274.3	276.9

INCHES INTO CENTIMETERS POUCES EN CENTIMETRES

9.3.3 VOLUME

GALLONS INTO LITERS GALLONS EN LITRES

Gal	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	Liters									
0		3.79	7.57	11.36	15.14	18.93	22.71	26.50	30.28	34.07
10	37.85	41.64	45.42	49.21	52.10	56.78	60.57	64.35	68.14	71.92
20	75.71	79.49	83.28	87.06	90.85	94.64	98.42	102.21	105.99	109.78
30	113.56	117.35	121.13	124.92	128.7	132.49	136.27	140.06	143.85	147.63
40	151.42	155.20	158.99	162.77	166.56	170.34	174.13	177.91	181.70	185.49
50	189.27	193.06	196.84	200.63	204.41	208.20	211.98	215.77	219.55	223.34
60	227.12	230.91	234.70	238.48	242.27	246.05	249.84	253.62	257.41	261.19
70	264.98	268.76	272.55	276.34	280.12	283.91	287.69	291.48	295.26	299.05
80	302.83	306.62	310.40	314.19	317.97	321.76	325.55	329.33	333.12	336.90
90	340.69	344.47	348.26	352.04	355.83	359.61	363.34	367.18	370.97	374.76
100	378.54	382.33	386.11	389.90	393.68	397.47	401.25	405.04	408.82	412.61

SECTION 9.3 SUPPLEMENT- CONVERSION TABLES

CUB CRAFTERS CC11-100

9.3.4 TEMPERATURE

°F	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	°C									
0		-17.20	-16.7	-16.10	-15.60	-15.00	-14.40	-13.90	-13.30	-12.80
10	-12.20	-11.70	-11.10	-10.60	-10.00	-9.44	-8.89	-8.33	-7.78	-7.22
20	-6.67	-6.11	-5.56	-5.00	-4.44	-3.89	-3.33	-2.78	-2.22	-1.67
30	-1.11	-0.56	0.00	0.56	1.11	1.67	2.22	2.78	3.33	3.89
40	4.44	5.00	5.56	6.11	6.67	7.22	7.78	8.33	8.89	9.44
50	10.00	10.60	11.10	11.70	12.00	12.80	13.30	13.90	14.40	15.00
60	15.60	16.10	16.70	17.20	17.80	18.30	18.90	19.40	20.00	20.60
70	21.10	21.70	22.20	22.80	23.30	23.90	24.40	25.00	25.60	26.10
80	26.70	27.20	27.80	28.30	28.90	29.40	30.00	30.60	31.10	31.70
90	32.20	32.80	33.30	33.90	34.40	35.00	35.60	36.10	36.70	37.20
100	37.80	38.30	38.90	39.40	40.00	40.60	41.10	41.70	42.20	42.80

FAHRENHEIT INTO CELSIUS FAHRENHEIT EN CELSIUS

9.3.5 TORQUE

INCH POUNDS INTO NEWTON METERS

In- Ibs.	+0	+10	+20	+30	+40	+50	+60	+70	+80	+90
	N-m									
0		1.1	2.3	3.4	4.5	5.6	6.8	7.9	9.0	10.2
100	11.3	12.4	13.6	14.7	15.8	16.9	18.1	19.2	20.3	21.5
200	22.6	23.7	24.9	26.0	27.1	28.2	29.4	30.5	31.6	32.8
300	33.9	35.0	36.2	37.3	38.4	39.5	40.7	41.8	42.9	44.1

FOOT POUNDS INTO NEWTON METERS

Ft-lb.	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	N-m									
20	27.1	28.5	29.8	31.2	32.5	33.9	35.3	36.6	38.0	39.3
30	40.7	42.0	43.4	44.7	46.1	47.5	48.8	50.2	51.5	52.9
40	54.2	55.6	56.9	58.3	59.7	61.0	62.4	63.7	65.1	66.4
50	67.8	69.1	70.5	71.9	73.2	74.6	75.9	77.3	78.6	80.0
60	81.3	82.7	84.1	85.4	86.8	88.1	89.5	90.8	92.2	93.6

Issued: 10/31/11 Date of Revision: N/A REPORT SC10000AFM Page Number: 9-3-5

9.3.6 SPEED

MPH	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9
	knots									
0	0.0	0.9	1.7	2.6	3.5	4.3	5.2	6.1	7.0	7.8
10	8.7	9.6	10.4	11.3	12.2	13.0	13.9	14.8	15.6	16.5
20	17.4	18.2	19.1	20.0	20.9	21.7	22.6	23.5	24.3	25.2
30	26.1	26.9	27.8	28.7	29.5	30.4	31.3	32.2	33.0	33.9
40	34.8	35.6	36.5	37.4	38.2	39.1	40.0	40.8	41.7	42.6
50	43.4	44.3	45.2	46.1	46.9	47.8	48.7	49.5	50.4	51.3
60	52.1	53.0	53.9	54.7	55.6	56.5	57.4	58.2	59.1	60.0
70	60.8	61.7	62.6	63.4	64.3	65.2	66.0	66.9	67.8	68.6
80	69.5	70.4	71.3	72.1	73.0	73.9	74.7	75.6	76.5	77.3
90	78.2	79.1	79.9	80.8	81.7	82.6	83.4	84.3	85.2	86.0
100	86.9	87.8	88.6	89.5	90.4	91.2	92.1	93.0	93.8	94.7
110	95.6	96.5	97.3	98.2	99.1	100.0	100.8	101.7	102.5	103.4
120	104.3	105.1	106.0	106.9	107.8	108.6	109.5	110.4	111.2	112.1
130	113.0	113.9	114.8	115.6	116.5	117.3	118.2	119.1	120.0	120.8
140	121.7	122.6	123.5	1243	125.2	126.0	126.9	127.8	128.7	129.5
150	130.3	131.2	132.1	132.9	133.8	134.7	135.6	136.5	137.4	138.2
160	139.0	139.9	140.8	141.6	142.5	143.4	144.3	145.2	146.1	146.9
170	147.7	148.6	149.5	150.3	151.2	152.1	152.9	153.8	154.7	155.5
180	156.4	157.3	158.2	159.0	159.9	160.8	161.6	162.5	163.4	164.2

MILES PER HOUR INTO KNOTS

9.3.7 DISTANCE

STATUTE MILES, NAUTICAL MILES, AND KILOMETERS

(Statute Miles x 1.609 = Kilometers)	(Kilometers x .622 = Statute Miles)
(Statute Miles x 8.69 = Nautical Miles)	(Nautical Miles x 1.15 = Statute Miles)
(Nautical Miles x 1.852 = Kilometers)	(Kilometers x .54 = Nautical Miles)

9.4 FORMS

LOG OF REVISIONS

Current revisions to the Pilot's Operating Handbook and Flight Training Supplement Section 9.4.

Rev	Pages	Description of Revision
NC	ALL	Initial Release

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 9-4-2

9.4.1 CHANGE OF ADDRESS / OWNERSHIP

	FUR CUB CRAFTERS USE UNLY	FUR CUB CRAI	
	DATE		SIGNATURE
	TELEPHONE NUMBER(S)		TELEPHONE NUMBER(S)
	Country		Country
Postal Code	State/Province	Postal Code	State/Province
	City		City
	Number and Street		Number and Street
	NEW ADDRESS		PREVIOUS ADDRESS
	COMPANY/ORGANIZATION		COMPANY/ORGANIZATION
	NEW OWNER (Last, First)		CURRENT OWNER (Last, First)
	Aircraft Registration Number:	CC11-	Aircraft Serial Number:
	CHANGE OF ADDRESS/OWNERSHIP FORM	3E OF ADDRE	CHANC

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 9-4-4

Issued: 04/15/09 Date of Revision: 10/31/11

9.4.2 CONTINUED OPERATIONAL SAFETY REPORTING

CONTINUED OPERATIONAL SAFETY REPORTING FORM				
NAME (Last, First)				
COMPANY/ORGANIZATION				
ADDRESS Number and Street				
City		AIRCRAFT MODEL		
		CC11		
State/Province	Postal Code	AIRCRAFT SERIAL NUMBER		
		CC11		
Country		AIRCRAFT REGISTRATION NUMBER		
DESCRIPTION OF SAFETY OF FLIGHT ISSU	E OR SIGNIFICA	NT SERVICE DIFFICULTY:		
BIGNATURE				
FOR CUB (CRAFTERS' US	SE ONLY		
COS Log Number:		Date Received:		

INTENTIONALLY LEFT BLANK

REPORT SC10000AFM Page Number: 9-4-6

Issued: 04/15/09 Date of Revision: 10/31/11

9.5.1 TWO-SWITCH ELEVATOR TRIM SYSTEM

LOG OF REVISIONS

Rev	Pages	Description of Revision
NC	ALL	Initial Release

INTENTIONALLY LEFT BLANK

REPORT SSC100000AFM Page number 9-5-2

Issued: 03/13/12 Date of revision N/A

9.5.2 GENERAL

This supplement must be attached to the Pilot's Operating Handbook when an additional switch is added to the aft control stick to operate the Two-Switch Elevator Trim System. The information contained herein supplements or supersedes the basic Pilot's Operating Handbook only in those areas listed in this supplement. For limitations, procedures and performance information not contained in this supplement, consult section 2 of this Pilot's Operating Handbook and FAA Approved Airplane Flight Manual.

This supplement must remain in the handbook at all times when the Two-Switch Elevator Trim System is installed.

9.5.2.1 DESCRIPTION

The Two-Switch Elevator Trim System consists of the following controls:

- A trim switch on top of the pilot's control stick (Figure 1)
- A trim switch on top of the aft occupants control stick (Figure 1)
- A trim selector switch located on the left wing root panel between the forward and aft seats (Figure 2)

The elevator trim may be actuated from the front or the aft seat. If both switches are operated at the same time, priority will be assigned depending on the position of the selector switch.

SECTION 9 SUPPLEMENTS- TWO-SWITCH ELEVATOR TRIM SYSTEM



Figure 1 Switches on control sticks

Figure 2 Trim Selector Switch

REPORT SSC100000AFM Page number 9-5-4

Issued: 03/13/12 Date of revision N/A

9.5.3 LIMITATIONS

9.5.4 EMERGENCY PROCEDURES

INADVERTENT ELEVATOR TRIM MOVEMENT Trim selector switch Off

Should the elevator trim system begin to move without being operated intentionally, switch the selector switch on the left wing root panel to the OFF position (middle position Figure 2).

9.5.5 NORMAL PROCEDURES

9.5.5.1 PREFLIGHT

Master switch	On
• Trim selector switch	Off
Operate forward and a	ft trim switches
	No movement
Trim selector switch	Forward
Forward and aft trim sw	vitches
simultaneously	Movement per fwd switch
Trim selector switch	Aft
Forward and aft trim sw	vitches

Issued: 03/13/12	REPORT SSC100000AFM
Date of revision: N/A	Page number 9-5-5

simultaneously..... Movement per aft switch

• Trim selector switch Set for intended operation

9.5.5.2 BEFORE TAKEOFF

• Trim selector switch Set for intended operation

9.5.6 PERFORMANCE

No change.

9.5.7 WEIGHT AND BALANCE

If the Two-Switch Elevator Trim System was installed at the factory, it is included in the licensed weight and balance information in section 6 of the Pilot's Operating Handbook. If it was retrofitted to the aircraft, the installation instructions provided by Cub Crafters will have the appropriate weight information that should be included in section 6 of the Pilot's Operating Handbook

9.5.8 DESCRIPTION AND OPERATION

The Two-Switch Elevator Trim System allows either occupant to operate the elevator trim. There is a selector switch on the left wing root panel (Figure 2) that has three positions,

- FRONT
- OFF
- REAR

When the selector switch is in the FRONT position, the system is biased in such a way that operation by the forward occupant will override any operation by the aft occupant.

The switch should normally be kept in the FRONT position to avoid inadvertent operation by an occupant in the aft seat.

Similarly, if the switch is in the REAR position, operation by the aft occupant will take priority over operation by the forward occupant. The REAR position will normally be used during flight instruction.

If the selector switch is turned to the OFF position, neither occupant will be able to operate the elevator trim.

INTENTIONALLY LEFT BLANK

REPORT SSC100000AFM Page number 9-5-8

Issued: 03/13/12 Date of revision N/A